List of Figures

Fig. 1.1: Scattering of neutron by one phonon, showing scattering involving absorption (left) and creation (right) of a phonon [16]...16

Fig. 1.2. (Upper) Layout and (Lower) schematic diagram of the triple-axis spectrometer at the Dhruva reactor, Trombay, India (after Ref. [2])...23

Fig 1.3. Time of Flight Spectrometer IN4C at Institut Laue Langevin, Grenoble, France (Courtesy: www.ill.fr)..25

Fig. 2.1. Phonon dispersion relation in Li$_2$O, at (a) 0 GPa, (b) 50 GPa and (c) 100 GPa. Solid symbols are experimental results from neutron scattering [46]...39

Fig. 2.2. Phonon density of states along with partial density of states of lithium and oxygen at different pressure...41

Fig. 2.3. (a) Specific heat at constant pressure compared with experimental data [42,44] (circles and triangles). (b) The equation of state for Li$_2$O...42

Fig. 2.4. Diffusion coefficient of Li and its variation with temperature and pressure as obtained from molecular dynamics simulations. Solid circles are experimental [45] results at ambient pressure..44

Fig. 2.5. (a) Calculated (open circles) thermal amplitude of lithium as a function of temperature at ambient pressure in comparison with experiment [2] (solid circles). (b) Variation of lattice volume with temperature at ambient pressure with experiment [42]. Full line is derived from quasiharmonic lattice dynamics calculations..45
Fig. 2.6. (a) Pair correlation functions of Li-Li, Li-O and O-O and (b) angle correlation function of Li-O-Li bond angle in Li₂O at different temperatures and ambient pressure as obtained from MD simulations.

Fig. 2.7. Snapshots of the movement of given lithium atoms (a) atom A and (b) atom B in a duration of 10 ps in the XY and YZ planes at 1250 K at ambient pressure. The values in the x-axis are actually multiples of lattice parameter at 1250 K.

Fig. 2.8. Phonon dispersion using quasiharmonic approximation at a = 4.6 and 4.9 Å (full black and red dashed lines). These values of the lattice parameters were obtained from MD simulations. Phonon energies shown below E = 0 have imaginary values indicating unstable modes.

Fig. 2.9. Motion of individual atoms for zone boundary TA mode along the [110] direction at a = 4.88 Å. The lengths of arrows are related to displacement of the atoms. The absence of an arrow on an atom indicates that the atom is at rest. b is perpendicular to the plane. O = red (dark gray) spheres, Li = blue (medium gray) spheres.

Fig. 2.10. Softening of zone boundary TA phonon along [110]. The equilibrium a parameter is 4.6 Å.

Fig. 2.11. Softening of elastic constants with increasing temperature compared with reported experimental results [42,2]. The open, half-filled symbols correspond to the calculated values using MD and LD formalism, while solid symbols denote the reported experimental Results.
Fig. 2.12. Energy profile for lithium ion movement along high-symmetry directions. Calculations were carried out using a 10 x 10 x 10 supercell corresponding to lattice parameter values of 4.606 and 4.88 Å..53

Fig. 2.13. Calculated (full lines) phonon dispersion relation in UO$_2$ at P = 0, 50 and 100 GPa. The P = 0 GPa calculated dispersion relations are compared with reported (solid circles) experimental data of Dolling et al [69]..55

Fig. 2.14. Phonon density of states at P = 0, 50 and 100 GPa along with the partial density of states for uranium and oxygen..88

Fig. 2.15. (a) Calculated specific heat at constant pressure. Quasiharmonic lattice dynamics calculations (full line) significantly underestimate the observed C$_P$(T) (solid circles). Taking into account thermal expansion obtained from MDS and temperature variation of bulk modulus, a fairly accurate description of C$_P$(T) has been obtained (open circles). (b) Equation of state of UO$_2$..56

Fig. 2.16. Oxygen atom’s diffusion coefficient, D and its variation with temperature obtained from MD simulations in comparison with those reported by Yakub [71].........................57

Fig. 2.17. (a) Calculated (MDS) thermal amplitude of oxygen<u2>$_{1/2}$ as a function of temperature (open circles) at ambient pressure and comparison with experiment [5] (solid circles). (b) Variation of lattice volume with temperature compared with experimental (solid circles) and reported MDS (solid stars, Yakub et al and open circles, this work).................58

Fig. 2.18. (a) Pair correlation functions of U-U, U-O and O-O and (b) angle-correlation function of O-U-O bond angle in UO$_2$ at different temperatures and at ambient pressure.....59
Fig. 2.19. Structure of LiMPO$_4$ (M=Mn, Fe) (orthorhombic Pnma space group) derived from xcrysden software at T = 0 K. Key: Li: Red spheres, M=Mn or Fe: Yellow spheres, P: Green spheres, O: Blue spheres……60

Fig. 2.20. The experimental neutron inelastic scattering spectra of LiMPO$_4$ (M=Mn, Fe) at 300 K. For better visibility the low Q and high Q spectra are shifted along the y-axis by 0.005 meV$^{-1}$ and 0.01 meV$^{-1}$ respectively……63

Fig. 2.21. The experimental S(Q,E) plots for LiMPO$_4$ (M=Mn, Fe) at 300 K………….. 67

Fig. 2.22. The comparison of the calculated and experimental neutron inelastic scattering spectra for LiMPO$_4$ (M=Mn, Fe) at ambient pressure at 300 K. The ab-initio as well as potential model calculations are carried out at 0 K. The multi-phonon contribution calculated using the Sjolander formalism [128(b)] has been subtracted from the experimental data. The experimental spectra comprises of magnetic and phonon contribution, while computed results pertain to phonon contribution alone. The calculated spectra have been convoluted with a Gaussian of FWHM of 0.5 meV to 10% of the energy transfer in order to describe the effect of energy resolution in the experiment……68

Fig. 2.23. The calculated partial densities of states in LiMPO$_4$ (M=Mn,Fe) using potential model……69

Fig. 2.24. Comparison between the experimental [79,102(a)] and calculated volume thermal expansion of LiMPO$_4$ (M=Mn, Fe). The dashed and full lines correspond to classical lattice dynamics (LD) and molecular dynamics (MD) calculations respectively…………………70
Fig. 2.25. Mean-Squared Displacement of constituent atoms in LiFePO$_4$ and LiMnPO$_4$ with increasing temperature using molecular dynamics simulations. .. 72

Fig. 2.26. Pair correlation function of different pairs of atoms in the olivines at various temperatures; 300K - Solid line; 1100 K - dashed line. ... 73

Fig. 3.1. Polyhedral representations of the crystal structure of YAG 90

Fig. 3.2. Pressure dependence of elastic constants and bulk modulus of YAG. For cubic crystals the relevant elastic constants under hydrostatic pressure that define the Born stability criteria are $c_{11} = C_{11} - P$, $c_{12} = C_{12} + P$ and $c_{44} = C_{44} - P$, where C_{11}, C_{12} and C_{44} are the elastic constant values derived from the slopes of the acoustic phonon branches 96

Fig. 3.3. Phonon frequencies at zone centre compared with available experimental optical data [5,32] .. 98

Fig. 3.4. Phonon dispersion relation along the three high symmetry directions in the low energy range up to 20 meV at $P = 0$ and 100 GPa ... 100

Fig. 3.5. Variation in the calculated mode Gruneisen parameters at various pressures 101

Fig. 3.6. Total and partial phonon densities of state in YAG at $P=0$, 50 and 100 GPa ... 102

Fig. 3.7. (a) Calculated volume thermal expansion coefficient (α_v) at different pressures. (b) Calculated specific heat at ambient condition in comparison with reported experimental (Konings et al) data [34]. Calculated specific heat at different high pressure has also been plotted for comparison. The inset gives the low temperature specific heat at various pressures. (c). Correction, C_p-C_v due to implicit effects at various pressures 104
Fig. 3.8. Thermal expansion of YAG in comparison with reported experimental (Geller et al) [35]……………………………………………………………………………………………… 105

Fig. 3.9. Pressure dependence of Raman modes in comparison with reported data. Open symbols are calculated values, while solid symbols [41] are reported experimental (Aravantidis et al) data values…………………………………………………………………………………106

Fig. 3.10. Equation of state of YAG (calculated results (full line) compared to reported experimental (Hua et al) data [28] (solid circles))………………………………………………………………………………………………………107

Fig. 3.11. Zone-centre phonon frequencies, open circles are this calculation and solid circles are experimental [36] data……………………………………………………………………………………………… 111

Fig. 3.12. Born instability in Yb$_3$Al$_5$O$_{12}$ and Lu$_3$Al$_5$O$_{12}$. Here, $c_{11} = C_{11} - P$, $c_{12} = C_{12} + P$ and $c_{44} = C_{44} - P$, where C_{11}, C_{12} and C_{44} are the elastic constant values derived from slopes of the acoustic phonon branches…………………………………………………………………………………112

Fig. 4.1. Neutron inelastic scattering data of the phonon density of states in AWO$_4$ (A = Ba, Ca, Sr and Pb) compared with shell model calculations…………………………………….125

Fig. 4.2. Calculated partial phonon density of states in all the three compounds………125

Fig. 4.3. Calculated phonon dispersion in SrWO$_4$ along with measured phonon branches along [100] and [001] directions in single crystal of SrWO$_4$ using TAS, Dhruva, India. Solid symbols are the measured phonons. The full, dashed and dotted lines are the calculated phonon branches belonging to different representations as carried out by the author………126

Fig. 4.4. Experimental and computed (using potential model) specific heat in AWO$_4$ (A = Ba, Sr, Ca and Pb). The experimental data for CaWO$_4$ is from Ref. [35]…………………127
Fig. 4.5. Calculated (using potential model) and experimental equation of state of AWO$_4$ (A = Ba, Ca, Sr and Pb). V and V$_o$ are the unit cell volume at high and ambient pressure respectively. ‘a’, ‘b’ and ‘c’ correspond to the experimental data from references [13], [24] and [27]. The full and dash lines correspond to calculations at T=300 K and 0 K respectively.

Fig. 4.6. The structure of BaWO$_4$ super cell evolving under pressure. Regions B and C are marked to depict and understand the change in coordination around A and W atoms. (c-axis is perpendicular to the plane of the paper)

Fig. 4.7. Intratetrahedral bond angle O-W-O with changing pressure in BaWO$_4$.

Fig. 4.8. Pair correlations between various atomic pairs as obtained from molecular dynamics simulations.

Fig. 4.9. Comparison of experimentally reported data of optically active modes with calculated values. Open and closed symbols correspond to the calculated and experimental [38,39] results.

Fig. 4.10. Inelastic neutron scattering data in comparison with the calculated density of states.

Fig. 4.11. Free energies of competing phases in LuVO$_4$ at 300 K.

Fig. 5.1. Schematic of the set up used for measuring rocking curves of the crystals.

Fig. 5.2. Schematic for mechanical pressing of copper single crystals.

Fig. 5.3. Double focusing monochromator to be used on TAS, Dhruva.

Fig. 5.4. Rocking curves of all the 15 crystals after mechanical treatment and alignment.
Fig. 5.5 Rocking curves of crystals placed in the different rows…………………………149

Fig. 5.6 Rocking curves of the crystals after final alignment…………………………150