GENERAL REMARKS

1. Nuclear Magnetic Resonance spectra were recorded on Bruker Avance-600 MHz, Varian Unity Inova-500 MHz, Bruker Avance-300 MHz and Varian-200 MHz spectrometer using tetramethylsilane (TMS) as the internal standard. Chemical shifts have been expressed in (δ) ppm units downfield from TMS. Selected data are reported as follows. Chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broadened, dd = doublet by doublet, dt = doublet by triplet, td = triplet by doublet), coupling constants (J in Hz) and assignments.

2. Liquid Secondary Ion Mass Spectra (LSIMS/FABMS) were recorded with a VG AUTOSPEC-M mass spectrometer at an acceleration voltage of 7 kV. meta-Nitro benzyl alcohol (MNBA) was used as matrix.

3. Optical rotations were measured using a Jasco Dip 300 digital polarimeter at 25 °C.

4. Melting points were determined using a Fisher-Johns melting point apparatus and are uncorrected.

5. Circular dichroism spectrums were acquired using JASCO-715 spectrometer at room temperature in MeOH and TFE, using a 1 mM path length CD cell. Spectra represent the average of 3 scans (100 ms time constant, 2 nM bandwidth) and were background corrected and smoothened over 2-5 data points. The scans were carried out from 260 to 190 nM, at 100 μM concentration. Molecular ellipticities per residue are given as deg.cm².dmoll⁻¹ per residue.

6. For restrained MD calculations, a large number of long-range nOes constraints derived from the volume integrals from the ROSEY spectra using two-spin approximation were used quantitatively.

7. All evaporations were carried out under reduced pressure on Büchi rotary evaporator or Heidolph rotary evaporator at below 45 °C.

8. All solvents and reagents were purified and dried by standard techniques.
9. All the reactions monitored by analytical thin layer chromatography (TLC) using E-Merck silicagel plates (60G-254). Visualization was accomplished with UV light (256 nm), iodine and by dipping in 2% phosphomolybdic acid in 15% aq. H$_2$SO$_4$ or 2.75% p-anisaldehyde in 3% H$_2$SO$_4$ or α-naphthol in 5% H$_2$SO$_4$ in EtOH followed by heating.

10. All non-aqueous reactions were carried out under nitrogen (N$_2$) atmosphere using dry, freshly distilled solvents unless otherwise noted. Yields refer to chromatographically and spectroscopically homogeneous materials isolated unless otherwise stated.

11. Nomenclature mentioned in the experimental section was adopted from Chem office ultra Cambridge software/Name version 9.0, Cambridge software, UK.

12. Room temperature = 25-27 °C.

13. Petroleum ether boiling point is 65-70 °C.