CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1-22</td>
</tr>
<tr>
<td>1.1 FOREWORD</td>
<td>02</td>
</tr>
<tr>
<td>1.1.1 Main Characteristics of FBR</td>
<td>03</td>
</tr>
<tr>
<td>1.1.2 Sodium as Coolant</td>
<td>03</td>
</tr>
<tr>
<td>1.2 FLOW SHEET OF FBR</td>
<td>05</td>
</tr>
<tr>
<td>1.3 IN-SITU TIME CONSTANT ESTIMATION OF CORE</td>
<td>09</td>
</tr>
<tr>
<td>MONITORING THERMOCOUPLES</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Classification of Blockages</td>
<td>12</td>
</tr>
<tr>
<td>• Gross blockages of subassembly</td>
<td>12</td>
</tr>
<tr>
<td>• Local blockages within subassembly</td>
<td>13</td>
</tr>
<tr>
<td>• Total instantaneous blockage</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2 Need for Fixing Thermocouple Response Time</td>
<td>14</td>
</tr>
<tr>
<td>1.4 UNDER SODIUM VIEWING FOR PROTRUSION DETECTION</td>
<td>16</td>
</tr>
<tr>
<td>1.5 DEVELOPMENT OF SODIUM LEVEL SENSORS</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1 General Techniques for Level Measurement</td>
<td>18</td>
</tr>
<tr>
<td>1.5.2 Challenges in Sodium Level Measurement</td>
<td>18</td>
</tr>
<tr>
<td>1.6 MOTIVATION FOR THE PRESENT STUDY</td>
<td>18</td>
</tr>
<tr>
<td>1.7 SCOPE AND OBJECTIVES OF THE THESIS WORK</td>
<td>20</td>
</tr>
<tr>
<td>1.8 ORGANIZATION OF THE THESIS</td>
<td>22</td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW
2.1 CORE TEMPERATURE MONITORING SYSTEM
2.2 ULTRASONIC IMAGING IN FBR
2.3 DEVELOPMENT OF SODIUM LEVEL SENSOR
2.4 CLOSURE

CHAPTER 3 IN-SITU ESTIMATION OF TIME CONSTANT FOR CORE TEMPERATURE MONITORING THERMOCOUPLES
3.1 INTRODUCTION
3.2 PRINCIPLE OF OPERATION OF THERMOCOUPLE
3.3 SPECIFICATION OF THERMOCOUPLE
3.4 LOCATION OF SENSOR IN THE REACTOR
3.5 SENSOR CONSTRUCTION
3.6 THEORETICAL MODELING OF THERMOWELL
3.7 METHODS USED TO DETERMINE THE TIME CONSTANT OF SENSOR IN FBR
3.8 ESTIMATION OF TIME CONSTANT OF CORE MONITORING SENSORS IN FBTR
3.9 ESTIMATION OF PROCESS TIME CONSTANT
3.10 UNCERTAINTIES IN TIME CONSTANT MEASUREMENT
3.11 RESULTS AND DISCUSSION
3.12 CLOSURE

CHAPTER 4 DEVELOPMENT OF ULTRASONIC TECHNIQUES FOR PROTRUSION DETECTION IN CORE TOP
4.1 INTRODUCTION
4.1.1 Principles of Ultrasonic Techniques
4.2 CONCEPT OF DETECTION METHOD 65

4.3. ULTRASONIC IMAGING USING DIRECT IMAGING TECHNIQUE 67

4.3.1 Simulation of Projected Component in the Reactor 68

4.3.2. Orientation of CSRDM and DSRDM in PFBR 72

4.3.3 Experimental Setup 72

- Mechanical setup 73
- PC based automation system 74
- Ultrasonic scanner 74
- Ultrasonic Transducer 75
- Ultrasonic test instrument 76
- Stepper motor and its drive system 76
- Software Architecture 78
- Commissioning of automation system 78

4.3.4 Details of Experiments 79

- Case – 1 79
- Case – 2 83
- Case – 3 83
- Case – 4 84

4.3.5 Discussion on Various Images 85

4.4 ULTRASONIC IMAGING USING INDIRECT IMAGING TECHNIQUE 87

4.4.1 Simulation 88

4.4.2 Algorithm 90

4.4.3 Details of Experiments 90
- Experiments in Sector -I 92
- Protrusion at same angle at different distance 94
- Protrusion at same distance at different angles 96
- Protrusion of CSRDM 97
- Experiments in Sector-4 99
- Study on effect of inclination of SSA 101
- Study on Random protrusion 102

4.4.4 Discussion on Results 103

4.5 CLOSURE 104

CHAPTER 5 DEVELOPMENT OF MUTUAL INDUCTANCE 106-133

TYPE SODIUM LEVEL SENSOR WITH NEW TEMPERATURE COMPENSATION TECHNIQUE

5.1 INTRODUCTION 107
5.2 THEORY OF LEVEL PROBES 109
5.3 PRINCIPLE OF OPERATION 112
5.4 CONSTRUCTION OF LONG LENGTH LEVEL PROBE 112
5.5 PERFORMANCE EVALUATION 115
5.6 DEVELOPMENT OF TEMPERATURE COMPENSATION TECHNIQUE 116

5.6.1 Principle of New Temperature Compensation Technique 119
5.6.2 Experimental Validation 120

5.7 IMPROVED ELECTRONICS CHASSIS 125
5.8 STUDIES TO IMPROVE THE SENSITIVITY OF THE PROBE 127
5.9 DISCUSSION ON RESULTS 128
5.10 MUTUAL INDUCTANCE TYPE DISCRETE LEVEL PROBE 129