Contents

1 **Introduction.** 1

1.1 Lattice and band structure 2

1.2 Quantum Hall measurements 4

1.3 Outline of the thesis 11

2 **Electric field effects on Landau levels in graphene.** 13

2.1 Cross electric and magnetic field 14

2.2 Numerical diagonalization of lattice model 20

2.3 Numerical solution for graphene lattice in magnetic field 24

2.4 Numerical solution for graphene lattice in cross electric and magnetic field 29

2.5 Dielectric breakdown ... 33

2.6 Experimental probing breakdown 35

2.7 Summary .. 36

3 **Interacting model for graphene** 37

3.1 Continuum approximation 39
3.2 Electron-electron interactions ... 42
3.3 Zeeman term ... 45
3.4 Symmetries ... 45
3.5 Summary ... 48

4 Variational wave function .. 49
4.1 Charge and spin ordering of $n = 0$ Landau level 50
4.2 Landau levels for massive Dirac particle in graphene 54
4.3 Variational states .. 56
 4.3.1 Parameterization for ground state at $\sigma_H = -1$ 59
 4.3.2 Parameterization for ground state at $\sigma_H = 0$ 60
4.4 Propagator for massive Dirac particle in presence of magnetic field 61
4.5 Two point correlation functions .. 67
4.6 Summary ... 70

5 SU(4) symmetric model ... 71
5.1 Expectation value for symmetric model 72
 5.1.1 Kinetic term .. 72
 5.1.2 Coulomb term .. 74
5.2 Ground state energy minimization 78
 5.2.1 Ground state at $\sigma_H = 0$ 78
 5.2.2 Ground state at $\sigma_H = -1$ 79
K.3 Ferromagnetic state .. 166
K.4 Canted state .. 168

L. Excitations: $\sigma_H = -1$... 171

 L.1 General expression for excitations 171
 L.2 Valley and spin polarized state 172
 L.3 Canted valley - Ferrimagnet 175