List of figures

Figure 2.1: Ion-beam induced surface nanostructuring (IBSN) setup…………………………18
Figure 2.2: Cross sectional view of the low energy ion source in IBSN………………………20
Figure 2.3: The outside view of the ion Tectra-make Gen II ECR-based source……………21
Figure 2.4: Schematic of the high vacuum pulsed dc magnetron sputtering setup…………24
Figure 2.5: Pulsed dc sputtering set up at SUNAG laboratory…………………………….25
Figure 2.6: Stylus surface profilometer...27
Figure 2.7: Schematic of AFM setup..29
Figure 2.8: Van der Waal’s force as a function of tip to surface distance…………………..30
Figure 2.9: MFPD AFM setup..32
Figure 2.10: Schematic representation of DPTCM using MFP-3D AFM setup…………..35
Figure 2.11: Schematic diagram of TEM parts, image formation and diffraction pattern formation process...39
Figure 2.12: Schematic diagram of Bragg’s reflection..40
Figure 2.13: XRD setup...42
Figure 2.14: Schematic diagram of the XPS setup displaying different components…….46
Figure 2.15: UV-Vis spectrophotometer..47
Figure 2.16: Schematic diagram of the Photoresponsivity measurement setup…………..53
Figure 3.1: Interaction of energetic ions with solid target……………………………………62

Figure 3.2: Rate of energy deposition, dE/dx, for Ar$^+$-ions in Si. Nuclear, electronic and total energy losses are plotted as a function of incident ion energy (E). The energy losses are calculated using SRIM 2012 Monte Carlo simulation code......................................66

Figure 3.3: Schematic diagram for definition of penetration depth, spread, radial range, and projected range...68
Figure 3.4: Schematic demonstration of Gaussian energy deposition of an incoming ion inside a target. θ: global angle of incidence; γ: local angle of incidence..74
Figure 3.5: Schematic illustration of the origin of the surface instability induced by ion beam erosion of non-planar surfaces. θ: global angle of incidence; γ: local angle of incidence……..76

Figure 3.6: Schematic illustration of the parallel-mode ripples……………………………..77

Figure 3.7: Schematic diagram of the laboratory coordinate frame (x, z) along with the local coordinate frame (x', z') to represent the CV mechanism. The local normal to the surface is represented by the unit vector z' which also the one axis of local coordinate frame……………78

Figure 3.8: Illustration of geometry of ion bombardment on a sinusoidal profile……………..89

Figure 4.1: Cross-sectional TEM image corresponding to ion incidence angle of 600 where the amorphous layer is marked by the red line. The inset shows slightly zoomed out version of the same sample………………………………………………………………………………….103

Figure 4.2: Roughness evolution plot corresponding to incidence angle of 600. The inset shows the AFM topographic images corresponding to exposure times of 1, 5.5, and 11 min, respectively…………………………………………………………………………………………103

Figure 4.3: AFM micrographs of p-Si(100): Exposed at an incidence angle of 510 for different times starting from 5 to 66 min. The arrow indicates the direction of the incoming ion beam…………………………………………………………………………………………104

Figure 4.4: Variation in roughness with exposure time for the incidence angle of 510 where the exponential fit is well realized. The inset shows the plot for wavelength versus exposure time at 510…………………………………………………………………………………………104

Figure 4.5: Temporal evolution of surface roughness at θ=650. Images corresponding to 2.2, 3.3, and 4.4 min of exposure times are shown as insets for a realization of the corresponding surface morphology………………………………………………………………………………106

Figure 4.6: Complete temporal evolution of surface roughness at all incidence angles. The dashed lines indicate the time beyond which the nonlinear effects start under the solid flow model where the exponential growth of roughness does not occur anymore………………108

Figure 4.7: AFM images of Si(100): (a) Pristine and exposed to 500 eV Ar$^+$-ions to the fluence of 5×10^{17} ions cm$^{-2}$ at incident angles of (b) 650, (c) 670, (d) 700, (e) 72.50, (f) 77.50, (g) 800, and (h) 82.50. Corresponding height scales in (a)-(h) are 1 nm, 15 nm, 23 nm, 37 nm, 51 nm, 19 nm, 3 nm, and 2 nm, respectively. Arrows indicate projection of the ion beam on the surface. Insets show the 2D FFT obtained from the corresponding images……………………………..109

Figure 4.8: AFM images of Si(100) exposed to 500 eV Ar$^+$-ions to the fluence of 5×10^{17} ions cm$^{-2}$ at incident angles of (a) 00, (b) 100, (c) 250, (d) 450, (e) 500, and (f) 510. Corresponding height scales in (a)-(f) are 1 nm, 1 nm, 1 nm, 1 nm, 1 nm, and 2 nm, respectively…………...111

Figure 4.9: (a) Evolution of rms surface roughness corresponding to different angle of incidence. (b) Plot of sputtering yield versus angle of incidence obtained from TRIDYN simulation performed for 500 eV Ar$^+$-ions to the fluence of 5×10^{17} ions cm$^{-2}$…………………..112
Figure 4.10: AFM images of (a) pristine-Si and those exposed to 500 eV Ar$^+$-ions at an incidence angle of 70° to various fluences: (b) 1×1017 ions cm$^{-2}$, (c) 2×1017 ions cm$^{-2}$, (d) 5×1017 ions cm$^{-2}$, (e) 10×1017 ions cm$^{-2}$, (f) 15×1017 ions cm$^{-2}$, and (g) 20×1017 ions cm$^{-2}$, respectively. The corresponding height scales for (a)-(g) are: 1 nm, 4.3 nm, 9.9 nm, 39.5 nm, 60.9 nm, 85.7 nm, and 182.2 nm. For better clarity (a)-(c) represent images acquired over a scan area of 1µm×1µm whereas (d)-(g) are of scan area 2µm×2µm. Insets show the 2D autocorrelation functions for corresponding images.

Figure 4.11: AFM images of silicon exposed to 500 eV Ar$^+$-ions at 72.5° incidence angle at fluences of (a) 1×1017 ions cm$^{-2}$, (b) 2×1017 ions cm$^{-2}$, (c) 5×1017 ions cm$^{-2}$, (d) 1×1018 ions cm$^{-2}$, (e) 1.5×1018 ions cm$^{-2}$, and (f) 2×1018 ions cm$^{-2}$, respectively. The corresponding height scales for (a)-(f) are: 4 nm, 4 nm, 74 nm, 86 nm, 154 nm, and 165 nm. For better clarity (a) & (b) have scan size of 1µm×1µm whereas (c)-(f) have scan size of 2µm×2µm. Insets show the 2D autocorrelation functions for corresponding images.

Figure 4.12: Line profiles extracted from the AFM images of ion exposed samples at 70° for various fluences: (a) 1×1017, (b) 2×1017, (c) 5×1017, (d) 10×1017, (e) 15×1017, and (f) 20×1017 ions cm$^{-2}$, respectively. Arrow indicates the direction of ion-beam onto the surface.

Figure 4.13: Line profiles extracted from the AFM images of ion exposed samples at 72.5° for different ion fluences: (a) 1×1017, (b) 2×1017, (c) 5×1017, (d) 10×1017, (e) 15×1017, and (f) 20×1017 ions cm$^{-2}$, respectively. Arrow indicates the direction of ion-beam onto the surface.

Figure 4.14: Schematic diagram depicting the mechanism responsible for coarsening of faceted structures at 72.5° (as a representative one). Arrows indicate the incident ion-beam.

Figure 4.15: Variation in rms surface roughness, ‘w’ with lateral feature dimension corresponding to both angles of incidence.

Figure 4.16: Variation in fractional change of the sputter erosion rate, ‘F’ with lateral feature dimension corresponding to both angles of incidence.

Figure 4.17: AFM images of (a) Pristine-Si and and exposed Si to 500 eV argon ions at a fluence of 5×1017 ions cm$^{-2}$ at different angles under continuous substrate rotation in the angular range of 40°-85°. Corresponding height scales in (a-f) are 1 nm, 1 nm, 4 nm, 8 nm, 10 nm, and 2 nm, respectively. Insets shows 2D FFT obtained from the corresponding images. (g) Shows angular dependence of surface roughness for both static and rotating samples. The reduction in surface roughness is very clear in case of rotating samples.

Figure 4.18: Roughness evolution plot as a function of ion incidence angle (shown later). Solid lines are guide to the eyes.

Figure 4.19: Phase diagram for different patterns versus control parameters like ion incidence angle (θ) and ion-beam energy (E). Both phase diagram are in the linear regime corresponding to the respective angle of incidence.

Figure 4.20: Roughness evolution plot in linear regime as a function of ion incidence angle.
Figure 4.21: AFM images showing temporal evolution of mounds corresponding to different times (fluences) namely (a) 11 min, (b) 22 min, (c) 54 min, and (d) 108 min at an incidence angle of 67°. Corresponding height scales in (a-d) are 6 nm, 8 nm, 8 nm, and 13 nm, respectively. Insets show 2D FFT obtained from the corresponding images.

Figure 4.22: (a) Variation in the lateral dimension of mounds as a function of square root of the sputtering time. (b) rms roughness plot as a function of sputtering time at 67° angle of incidence. Dashed lines are for guide to the eyes.

Figure 4.23: (a) Variation of the lateral dimension of the mounds as a function of square root of the sputtering time. (b) rms roughness plot as a function of sputtering time at 60° angle of incidence. Dashed lines are for guide to the eyes.

Figure 4.24: AFM images showing the effect of rotational speed variation corresponding to different angular speeds, namely (a) 17.4, (b) 26.2, and (c) 43.6 rad s⁻¹ at an incidence angle 67°. Corresponding height scale in (a-c) is 11 nm. Insets shows 2D FFT obtained from the corresponding images.

Figure 4.25: (a) rms roughness versus rotational speed variation plot for 67° and at a fixed fluence of 5×10¹⁷ ions cm⁻² incidence angle. (b) and (c) show corresponding mound dimension and height versus rotational speed plots, respectively.

Figure 5.1: Three-dimensional AFM micrographs corresponding to samples exposed to ion fluence of 2×10¹⁸ cm⁻² at incidence angle of 70° (a) and 72.5° (b). Figure 1(c) depicts the evolution of average facet heights as a function of ion fluence at θ=70° and 72.5°.

Figure 5.2: XTEM image showing silicon facets fabricated by using 500 eV Ar-ions to the fluence of 5×10¹⁷ cm⁻². The black circles depict the zones where a-Si and native oxides are present. Inset shows the FFT of the same image which reveals presence of different crystallographic planes.

Figure 5.3: 2p core level Si XPS spectra taken from (a) Pristine-Si and samples exposed to ion fluences of (b) 5×10¹⁷, (c) 2×10¹⁸ cm⁻², respectively.

Figure 5.4: (a) Reflectance study corresponding to Pristine-Si and samples exposed to four different ion fluences, viz. 5×10¹⁷, 1×10¹⁸, 1.5×10¹⁸, and 2×10¹⁸ cm⁻² for incidence angle of 72.5°, (b) facet height versus percentage area covered by the faceted structures extracted by using SPIP software from the respective AFM images shown in Fig. 1, and (c) schematic of the refractive index profile from air to Si substrate due to the presence of a facet.

Figure 5.5: PL spectra plotted against wavelength for ion incidence angle of 72.5° and for fluences of (i) 5×10¹⁷, (ii) 1×10¹⁸, (iii) 1.5×10¹⁸, and (iv) 2×10¹⁸ ions cm⁻², respectively. Inset shows the PL spectrum corresponding to Pristine-Si: PL spectra plotted against wavelength for ion incidence angle of 72.5° and for fluences of (i) 5×10¹⁷, (ii) 1×10¹⁸, (iii) 1.5×10¹⁸, and (iv) 2×10¹⁸ ions cm⁻², respectively. Inset shows the PL spectrum corresponding to Pristine-Si.

Figure 5.6: (a) Field emission current density as a function of the applied electric field for the nanofaceted-Si (green) and pristine-Si nanotube (brown), (b) Fowler-Nordheim plot for the nanofacets. The straight line drawn is for guide to the eye.
Figure 5.7: (a) Schematic of the DPTCM measurement using dual pass mode. (b) XTEM image showing silicon facets fabricated by using 500 eV Ar-ions to the fluence of 5×10^{17} cm$^{-2}$. The yellow lines depict the zones where native oxides are present. (c) Topographical image of nanofaceted-Si surface in contact mode. Corresponding height scale is 0 to 414 nm. (d) Map of tunnelling current measurements showing clear contrast difference in the valley and apex. Corresponding height scale is 0 to 60 pA. Blue and green lines in (c) and (d) are for guide to eyes.

Figure 5.8: (a) Topography image of a single nanofacet having a height scale of 101 nm. (b) SKPM image of nanofaceted-Si surface depicting variation of work function over the surface. Corresponding height scale is 70 to 120 mV. (i), (ii), (iii), and (iv) are the regions from where corresponding work functions are calculated.

Figure 6.1: Schematic of the ion-beam fabrication of rippled-Si and its further usage as a template for growth of AZO films. The projection of incoming flux during deposition was kept same as that of the ion-beam projection onto pristine-Si surface for fabrication of ripples.

Figure 6.2: AFM images: (a) rippled-Si, (b) R1, (c) R2, (d) R3, (e) pristine-Si, (f) P1, (g) P2, and (h) P3. Insets are 2D FFT of the respective images. The white arrow in (a) indicates the projection of argon ion-beam onto the pristine-Si substrate. The height scales in (a)-(h) are: 6 nm, 9 nm, 10 nm, 12 nm, 1 nm, 6 nm, 8 nm, and 9 nm, respectively.

Figure 6.3: XRD spectra corresponding to 30 nm-thick AZO overlayers: R3 and P3.

Figure 6.4: (a)-(c) present XTEM micrographs corresponding to R2: (a) Low-magnification image, showing a uniform and conformal growth of AZO on the native oxide covered rippled-Si substrate, (b) HRTEM image obtained from the marked region on (a), showing the interface regions of native oxide covered rippled-Si substrate and AZO overlayer, where columnar growth of AZO film is demonstrated by dashed yellow lines on the same. (c) HRTEM image taken from the marked region on (b), which shows lattice fringes.

Figure 6.5: Core-level Zn2p and O1s spectra of AZO films having thicknesses of 10 nm [(a)-(b)] and 15 nm [(c)-(d)] grown on rippled-Si templates.

Figure 6.6: PL spectra of AZO films recorded at room temperature: (a) 10 nm, (b) 15 nm, and (c) 30 nm-thick films on pristine- and rippled-Si substrates.

Figure 6.7: Variations in free excitonic shift and average grain size of R1, R2, and R3 as a function of thickness. The inset shows AFM phase contrast image of R1, where the presence of smaller grains are evident (marked by green closed loops). The range of the scale bar in this case is -3° to +12°. The solid lines are guide to the eyes.

Figure 6.8: Flow chart for ion-beam fabrication of nanofaceted Si followed by conformal growth of AZO films on the same.

Figure 6.9: Plan-view SEM images: (a) Faceted-Si nanostructures, (b) AFM topographic image where inset shows the 2D FFT, (c) and (d) after growing AZO films on nanofaceted Si having thicknesses of 30 and 75 nm, respectively. The black arrows indicate the direction of ion-beam bombardment whereas the yellow arrows represent the direction of AZO flux during sputter deposition.
Figure 6.10: (a) Representative EDS spectrum of 60 nm thick AZO overlayer grown on Si nanofacets, showing the presence of Si, Zn, and O; (b) plot of atomic concentration versus AZO overlayer thickness obtained from EDS analyses. The solid lines are guide to the eyes; (c) X-ray diffractograms of AZO films grown on nanofaceted silicon. The signal corresponding to the 30 nm thick AZO overlayer is not strong and therefore, the corresponding diffractogram is not shown here.

Figure 6.11: (a) Reflectance spectra corresponding to pristine-Si, nanofaceted-Si, and AZO overlayers grown on faceted Si having thicknesses of 30 nm, 60 nm, and 75 nm. (b) Reflectance spectra obtained from 30, 60, and 75 nm thick AZO films deposited on faceted Si where the dashed line corresponds to the domain of reflectance minima for different AZO layer thickness (all the reflectance spectra shown here do not contain any contribution from diffuse reflectance).

Figure 6.12: Photoresponsivity spectra of 30 nm thick AZO overlayer grown on planar and nanofaceted Si in the spectral range of 300-800 nm. The inset shows the optical reflectance spectra for these two samples mentioned above.

Figure 6.13: AFM images corresponding to (a) nanofaceted-Si template and (b) 75 nm AZO grown on nanofaceted-Si. Line profiles drawn on (a) and (b) are shown in (c) and (d) shows a high-resolution SEM image of (b).

Figure 6.14: (a) Thickness-dependent nonlinear I-V characteristics where the inset shows a schematic view of an AZO/Si heterojunction diode. (b) 1/C²-V characteristics for different AZO film thicknesses.

Figure 6.15: Thickness-dependent photoresponsivity spectra in the wavelength range of 300-800 nm. The inset shows variation in the barrier height and turn-on potential as a function of AZO thickness.