Chapter 3

SIMPLE AND SEMISIMPLE

L-MODULES

3.1 Introduction
3.2 Simple L-Modules
3.3 Semisimple L-Modules

* Some results of this chapter will appear in a paper accepted for publication by the Journal of Fuzzy Mathematics.

** Some other results of this chapter have appeared in the Proceedings of the National Seminar on Graph Theory and Fuzzy Mathematics held at Catholicate College, Pathanamthitta, Kerala; August 28-30, 2003.
3.1 Introduction.

The concepts of simple and semisimple modules form an important area of study in the theory of R-modules. Recall that a left module M over a ring R is said to be simple if it does not contain any submodule other than 0 and M, and if $M \neq 0$. A left module M is said to be semisimple if each of its proper submodules is a direct summand of M and there are several other equivalent definitions in the literature. In this chapter we extend these notions to the fuzzy setting and investigate some properties.

3.2 Simple L-Modules.

In this section we introduce the concept of simple L-modules and prove that if L is regular, then M is simple if and only if 1_M is a simple left L-module.

3.2.1 Definition:

Let $\mu \in L(M)$ be a left L-module. Then $\lambda \in L^M$ is said to be an L-submodule of μ if λ itself is a left L-module such that $\lambda \subseteq \mu$. That is if

(i) $\lambda(0) = 1$

(ii) $\lambda(x + y) \geq \lambda(x) \land \lambda(y) \quad \forall x, y \in M$

(iii) $\lambda(rx) \geq \lambda(x) \quad \forall r \in R, \forall x \in M$

(iv) $\lambda(x) \leq \mu(x) \quad \forall x \in M$

3.2.2 Definition:

Let $\mu : M \rightarrow L$ be a left L-module. Then a left L-module $\eta : M \rightarrow L$ is said
to be a strictly proper L-submodule of μ if $\eta \subseteq \mu$, $\eta \neq 1_{\{0\}}$, $\eta(x) = \mu(x)$ $\forall x$
for which $\eta(x) > 0$ and $\eta^\ast \subseteq \mu^\ast$; and $\eta : M \to L$ is said to be a proper L
submodule of μ if $\eta \subseteq \mu$, $\eta \neq 1_{\{0\}}$, $\eta^\ast \subseteq \mu^\ast$.

3.2.3 **Definition:**

$\mu \in L(M)$ is said to be a simple left L-module if μ has no proper L
submodules.

3.2.4 **Example:**

Let D be a division ring. Let $R = M_n(D)$ be the set of all $n \times n$ matrices
with entries in D. Let $R_i = \{A \in R : j^{\text{th}}$ column of A is 0, for $j \neq i\}$. Then R_i is a
left R-module.

For $i = 1, 2, 3..., n$, define $\mu_i : R \to [0, 1]$ as

$$\mu_i(A) = \begin{cases}
1 & \text{if } A = 0 \\
\frac{1}{2^i} & \text{if } A \in R_i - \{0\} \\
0 & \text{if } A \not\in R_i
\end{cases}$$

Then $\mu_i; i = 1, 2, 3..., n$ are simple left L-modules.

3.2.5 **Theorem:**

Suppose L is regular. Then M is simple if and only if 1_M is a simple left
L-module.

Proof:

Suppose M is simple. Then M has no proper submodules. If possible let
1_M be not a simple left L-module. Then 1_M has a proper left L-submodule say μ
such that $\lambda \neq 1_{\{0\}}$, $\lambda^* \subset 1_M^* = M$. Since $\lambda \in L(M)$, and since L is regular, λ^* is a submodule of M and $\lambda^* \neq \{0\}$, $\lambda^* \neq M$. That is λ^* is a proper submodule of M. This contradicts the fact that M is simple.

Conversely suppose that 1_M is a simple left L-module. If possible assume that M is not simple. Let N be a proper submodule of M. Then $N \neq \{0\}, N \neq M$. Define $\lambda : M \to L$ by

$$\lambda(x) = \begin{cases} 1 & \text{if } x \in N \\ 0 & \text{if } x \notin N \end{cases}$$

Then $\lambda \in L(M)$; $\lambda \subset 1_M$, $\lambda \neq 1_{\{0\}}$ or 1_M and $\lambda^* \subset M = 1_M^*$. Hence λ is a proper L-submodule of 1_M which is a contradiction.

3.3 Semisimple L-Modules.

Now we introduce the notion of semisimple L-modules and prove the fuzzy analogues of the theorems 'every submodule of a semisimple module is semisimple' and 'every semisimple module contains a simple submodule' in the crisp case. We also prove some other theorems which are relevant in the fuzzy setting.

3.3.1 Definition:

Let $\mu \in L(M)$. Then μ is said to be a semisimple left L-module if whenever λ is a strictly proper L-submodule of μ, there exists a strictly proper L-submodule η of μ such that $\mu = \lambda \oplus \eta$.
That is if \(\lambda \) is a proper \(L \)-submodule of \(\mu \) such that \(\lambda(x) = \mu(x) \ \forall x \) for which \(\lambda(x) > 0 \); then there exists a proper \(L \)-submodule \(\eta \) of \(\mu \) satisfying \(\eta(x) = \mu(x) \ \forall x \) for which \(\eta(x) > 0 \), such that \(\mu = \lambda \oplus \eta \).

3.3.2 Example:

Let \(D \) be a division ring. Consider \(R = M_3(D) = \{3 \times 3 \text{ matrices over } D\} \), which is a ring with unity with respect to the addition and multiplication of matrices. Let \(R_i = \{A \in R : j^{th} \text{ column of } A \text{ is } 0, \text{ for } j \neq i\} \). Then \(R_i \) is a simple left module over \(R \) for \(i = 1, 2, 3 \) and \(_RR \) is a semisimple left module.

Define \(\mu : R \rightarrow [0, 1] \) by

\[
\mu(A) = \begin{cases}
1 & \text{if } A \neq 0 \\
\frac{1}{2} & \text{if } A \in R_i - \{0\} \\
\frac{1}{3} & \text{if } A \in R_i + R_2 - \{R_i\} \\
\frac{1}{4} & \text{if } A \in R_i + R_2 + R_3 - \{R_i + R_2\}
\end{cases}
\]

Then \(\mu \) is a semisimple left \(L \)-module.

3.3.3 Theorem:

Let \(M \) be a left module over a ring \(R \). Then \(M \) is semisimple if and only if \(1_M \) is a semisimple left \(L \)-module.

Proof:

Suppose \(M \) is semisimple. To prove that \(1_M \) is a semisimple left \(L \)-module.

Let \(\mu \) be a strictly proper \(L \)-submodule of \(1_M \). To show that there exists a strictly proper \(L \)-module \(\eta \in \mathcal{L}(M) \) such that \(1_M = \mu \oplus \eta \).
For this let \(S = \{ x \in M : \mu(x) = 1 \} \). Then obviously \(S \) is a submodule of \(M \); \(S \neq 0, S \neq M \). Therefore since \(M \) is semisimple, \(S \) is a direct summand of \(M \). Hence we can write \(M = S \oplus T \) for some submodule \(T \) of \(M \). Now define \(\eta : M \to L \) by,

\[
\eta(x) = \begin{cases}
1 & \text{if } x \in T \\
0 & \text{if } x \notin T
\end{cases}
\]

Then \(\eta \in L(M) \). Further \(\eta(x) = 1_M(x) \quad \forall \ x \) for which \(\eta(x) > 0 \). Now \((\mu + \eta)(x) = \vee \{ \mu(y) \land \eta(z) : y, z \in M, y + z = x \} \). Since \(M = S \oplus T \), \(x \in M \) can be uniquely expressed as \(x = s + t \), where \(s \in S \) and \(t \in T \). Thus \(x = s + t \), where \(\mu(s) = 1 \), \(\eta(t) = 1 \). Therefore \((\mu + \eta)(x) = 1 \quad \forall \ x \in M \). Thus we get \(\mu + \eta = 1_M \). Also, since \(S \cap T = \{0\} \), we get \(\mu \cap \eta = 1_{\{0\}} \) and hence \(1_M = \mu \oplus \eta \). This proves the first part.

Conversely suppose that \(1_M \) is a semisimple left \(L \)-module. To prove that \(M \) is semisimple. For this let \(S \) be any proper submodule of \(M \). To prove that \(S \) is a direct summand of \(M \). Define \(\mu \in L^M \) by,

\[
\mu(x) = \begin{cases}
1 & \text{if } x \in S \\
0 & \text{if } x \notin S
\end{cases}
\]

Then clearly \(\mu \subseteq L(M) \) and \(\mu \) is a strictly proper \(L \)-submodule of \(1_M \). Since \(1_M \) is semisimple, \(1_M = \mu \oplus \eta \) for some strictly proper \(L \)-submodule \(\eta \) of \(1_M \). Take \(T = \{ x \in M : \eta(x) = 1 \} \). Then \(T \) is a submodule of \(M \). We show that \(M = S \oplus T \). For all \(x \in M \), we have,

\[
1 = 1_M(x) = (\mu + \eta)(x) = \vee \{ \mu(y) \land \eta(z) : y + z = x, \ y, z \in M \}
\]
which implies \(\mu(y) = \eta(z) = 1 \) for some \(y, z \in M \), where \(y + z = x \) (since \(\mu(y) = 1 \) or \(0 \) and \(\eta(z) = 1 \) or \(0 \)). Thus if \(x \in M \) then \(x = y + z \) for some \(y \in S, \ z \in T \).

So \(M = S + T \). Also, since \(\mu \cap \eta = 1_{(0)} \), we get \(S \cap T = \{0\} \). Therefore \(M = S \oplus T \). This completes the proof.

3.3.4 Theorem:

Let \(\mu \in L(M) \) be a semisimple left \(L \)-module. Then \(\mu_a^> \) is a semisimple submodule of \(M \) \(\forall \ a \neq 0 \in L \).

Proof:

Given \(\mu \in L(M) \) is semisimple. To prove that \(\mu_a^> \) is a semisimple submodule of \(M \) \(\forall \ a \neq 0 \in L \). Assume \(a \neq 0 \). Let \(A \) be a submodule of \(\mu_a^> \). To show that \(A \) is a direct summand of \(\mu_a^> = \{x \in M : \mu(x) > a\} \). Define \(\eta \in L^M \) by

\[
\eta(x) = \begin{cases}
\mu(x) & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
\]

Then clearly \(\eta \in L(M) \) and \(\eta \) is a strictly proper \(L \)-submodule of \(\mu \) such that \(\eta_a^> = A \). Since \(\mu \) is semisimple and \(\eta \) is a strictly proper \(L \)-submodule of \(\mu \), there exists a strictly proper \(L \)-submodule \(\nu \) of \(\mu \) such that \(\mu = \eta \oplus \nu \). Then \(\nu(x) = \mu(x) \ \forall \ x \) for which \(\nu(x) > 0 \). Take \(B = \nu_a^> = \{x \in M : \nu(x) > a\} \). We prove that \(\mu_a^> = A \oplus B \). That is we prove that \(\mu_a^> = \eta_a^> \oplus \nu_a^> \).

For: \(x \in \mu_a^> \Rightarrow \mu(x) > a \)

\[
\Rightarrow (\eta \oplus \nu)(x) > a
\]

\[
\Rightarrow \nu(\eta(y) \wedge \nu(z) : y, z \in M; \ y + z = x) > a
\]
Thus $x \in \mu^> \Rightarrow \exists y, z \in M$ with $y + z = x$ such that $\eta(y) \wedge \nu(z) > a$

$\Rightarrow \exists y, z \in M$ with $y + z = x$ such that $\eta(y) > a$ and $\nu(z) > a$

Hence $\mu^> = \eta^> + \nu^>$.

Also, $x \in \eta^> \cap \nu^> \Rightarrow x \in \eta^> \cap \nu^>$

$\Rightarrow \eta(x) > a$, $\nu(x) > a$

$\Rightarrow (\eta \cap \nu)(x) = \eta(x) \wedge \nu(x) \geq a > 0$

$\Rightarrow x = 0$ (since $\eta \oplus \nu$ is a direct sum)

Thus $\eta^> \cap \nu^> = \{0\}$. Hence $\mu^> = \eta^> \oplus \nu^> = A \oplus B$. That is A is a direct summand of $\mu^>$. So $\mu^>$ is a semisimple submodule of $M \forall a \neq 0 \in L$.

Note: In the above theorem, if L is regular, $\mu^>$ is semisimple even if $a = 0$.

That is $\mu^>$ is a semisimple submodule of M, if L is regular.

3.3.5 Theorem:

Suppose L satisfies the complete distributive property. Then every strictly proper L-submodule of a semisimple left L-module is semisimple.

Proof:

Let μ be a given semisimple left L-module and λ be a strictly proper L-submodule of μ. To show that λ is a semisimple left L-module. For this let η be a strictly proper L-submodule of λ. Since λ is a strictly proper L-submodule of μ we see that η is a strictly proper L-submodule of μ. Since μ is semisimple there exists a strictly proper L-submodule δ of μ such that $\mu = \eta \oplus \delta$.
Now we prove that $\lambda \cap (\eta \oplus \delta) = (\lambda \cap \eta) \oplus (\lambda \cap \delta)$. We have

$$[\lambda \cap (\eta + \delta)](x)$$

$$= \lambda(x) \land (\eta + \delta)(x)$$

$$= \lambda(x) \land (\lor \{\eta(y) \land \delta(z) : y, z \in M; y + z = x\})$$

$$= (\lor \\{\lambda(y) \land \lambda(z) : y, z \in M; y + z = x\}) \land (\lor \{\eta(y) \land \delta(z) : y, z \in M; y + z = x\})$$

(Since λ being an L-module, for $x = y + z$, $\lambda(x) = \lambda(y + z)$)

$$\lambda(y) \land \lambda(z); \text{ and equality is attained for } x = x + 0 \text{ or } x = 0 + x$$

$$= \lor \\{(\lambda(y) \land \lambda(z)) \land (\eta(y) \land \delta(z)) : y, z \in M; y + z = x\}$$

$$= \lor \\{(\lambda(y) \land \eta(y)) \land (\lambda(z) \land \delta(z)) : y, z \in M; y + z = x\}$$

$$= \lor \\{(\lambda \cap \eta)(y) \land (\lambda \cap \delta)(z) : y, z \in M; y + z = x\}$$

$$= [(\lambda \cap \eta) + (\lambda \cap \delta)](x)$$

Thus $\lambda \cap (\eta + \delta) = (\lambda \cap \eta) + (\lambda \cap \delta) = \eta + (\lambda \cap \delta)$ (since $\eta \subseteq \lambda$)

Now $(\eta \cap (\lambda \cap \delta))(x) = (\eta \cap (\delta \cap \lambda))(x)$

$$= ((\eta \cap \delta) \cap \lambda)(x)$$

$$= 1_{\{0\}}(x) \land \lambda(x)$$

$$= 1_{\{0\}}(x)$$

Thus $\eta \cap (\lambda \cap \delta) = 1_{\{0\}}$. Hence $\eta + (\lambda \cap \delta) = \eta \oplus (\lambda \cap \delta)$.

Therefore $\lambda \cap (\eta \oplus \delta) = \eta \oplus (\lambda \cap \delta)$. So we get $\lambda = \lambda \cap \mu = \lambda \cap (\eta \oplus \delta) = \eta \oplus (\lambda \cap \delta)$. Obviously $\lambda \cap \delta$ is a strictly proper L-submodule of λ. Therefore λ is a semisimple L-module. This completes the proof of theorem.
3.3.6 Theorem:

Suppose L is regular. Let $\mu \in L(M)$ be a semisimple left L-module. Then μ contains a simple left L-module.

Proof:

Given that $\mu \in L(M)$ is semisimple. Then for $a \in L$, μ_a is a semisimple submodule of M. Therefore μ_a contains a simple submodule say A. That is A has no proper submodule.

Define $\eta : M \to L$ by

$$
\eta(x) = \begin{cases}
\mu(x) & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
$$

We claim that η is a simple left L-module. If not η has a proper L-submodule ν; $\nu \neq 1_{\{0\}}$, $\nu \subset \eta \subseteq A$. Thus $\{0\} \subset \nu \subset A$. But $\nu = \{x \in M : \nu(x) > 0\}$ is clearly a submodule of A. (since L is regular and $\nu \in L(M)$). Thus ν is a proper submodule of A which is a contradiction. Hence η is a simple left L-module.

For a left R-module $__M$ the equivalence of the following three properties is well known in crisp theory.

(1) M is semisimple.

(2) M is the sum of a family of simple submodules.

(3) M is the direct sum of a family of simple submodules.

Similar to this result we have the following theorem in the fuzzy case.
3.3.7 Theorem:

Let L be a complete distributive lattice and let $\mu \in L(M)$ be a left L-module. Then the following are equivalent.

(1) μ is semisimple.

(2) μ is the sum of a family of strictly proper simple L-submodules μ_i, $(i \in I)$ of μ.

(3) μ is the direct sum of a family of strictly proper simple L-submodules μ_j, $(j \in J)$ of μ.

Proof:

(1) \Rightarrow (2). Suppose $\mu \in L(M)$ is semisimple. Let λ be the sum of all strictly proper simple L-submodules μ_i, $(i \in I)$ of μ, where $\mu_i(x) = \mu(x) \forall x$ for which $\mu_i(x) > 0$, $(i \in I)$. Then clearly λ is a strictly proper L-submodule of μ such that $\lambda(x) = \mu(x) \forall x$ for which $\lambda(x) > 0$. Therefore there exists a strictly proper L-submodule η of μ such that $\lambda(x) = \mu(x) \forall x$ for which $\lambda(x) > 0$. We claim that $\eta = 1_{\{0\}}$ so that $\mu = \lambda$. If not, being an L-submodule of μ which is strictly proper, η is semisimple and so η contains a simple L-submodule say δ. Moreover we can choose δ such that $\delta(x) = \eta(x) \forall x$ for which $\delta(x) > 0$, and so $\delta(x) = \mu(x) \forall x$ for which $\delta(x) > 0$ (since η is a strictly proper submodule of μ). Then $\delta \neq 1_{\{0\}}$, $\delta \subseteq \eta$ and $\delta^* \subseteq \eta^*$.

Also being a strictly proper simple L-submodule of μ such that $\delta(x) = \mu(x) \forall x$ for which $\delta(x) > 0$, we get $\delta \subseteq \lambda$. Thus we get $\delta \subseteq \lambda \cap \eta$ which in turn implies that $\delta = 1_{\{0\}}$. This is a contradiction. Hence $\eta = 1_{\{0\}}$ and so $\mu = \lambda$.
Conversely let μ be the sum of a family of strictly proper simple L-submodules μ_i ($i \in I$) of μ say $\mu = \sum_{i \in I} \mu_i$, where for $i \in I$, $\mu_i(x) = \mu(x)$ $\forall x$ for which $\mu_i(x) > 0$. To show that μ is a semisimple left L-module. That is to show that corresponding to any strictly proper L-submodule λ of μ there exists a strictly proper L-submodule η of μ such that $\mu = \lambda \oplus \eta$.

Let λ be a strictly proper L-submodule of μ. Consider subsets $J \subseteq I$ with the properties

(i) \[\sum_{j \in J} \mu_j \text{ is a direct sum } \bigoplus_{j \in J} \mu_j \]

(ii) \[\lambda \cap \sum_{j \in J} \mu_j = 1_{\{0\}} \]

Consider the family F of all such J's with respect to ordinary inclusion. $F \neq \emptyset$ as it contains the empty set. By Zorn's lemma there exists a maximal element in F.

Take such a maximal J. For this J, let $\mu' = \lambda + \sum_{j \in J} \mu_j = \lambda \oplus (\bigoplus_{j \in J} \mu_j)$. Then μ' is such that $\mu'(x) = \mu(x)$ $\forall x$ for which $\mu'(x) > 0$. Now we show that $\mu' = \mu$. For this we prove that $\mu_i \subseteq \mu'$ $\forall i \in I$. Suppose not. Then $\mu_i \not\subset \mu'$ for some i. Consider $\mu' \cap \mu_i$ for this i. It is an L-submodule of μ_i. Since μ_i is simple we have $\mu' \cap \mu_i = 1_{\{0\}}$ or $(\mu' \cap \mu_i)^* = \mu_i^*$. Therefore $\mu' \cap \mu_i = 1_{\{0\}}$ or μ_i (since L is regular, if $(\mu' \cap \mu_i)(x) > 0$ then both $\mu'(x)$, $\mu_i(x) > 0$; and then $\mu_i(x) = \mu(x) = \mu'(x)$). Since $\mu_i \not\subset \mu'$ we get $\mu' \cap \mu_i = 1_{\{0\}}$. Therefore $\mu' + \mu_i$ is a direct sum $\mu' \oplus \mu_i = \lambda \oplus (\bigoplus_{j \in J} \mu_j) \oplus \mu_i$. This contradicts the maximality of J. Therefore $\mu_i \subseteq \mu'$.
\(\forall i \in I. \) This implies \(\mu = \sum_{i \in I} \mu_i \subseteq \mu' \). That is \(\mu \subseteq \mu' \). Clearly \(\mu' \subseteq \mu \). Hence \(\mu = \mu' = \lambda \oplus \sum_{j \in J} \mu_j \). Thus there exists a strictly proper \(L \)-submodule \(\eta = \sum_{j \in J} \mu_j \) of \(\mu \), where \(\eta(x) = \mu(x) \ \forall x \) for which \(\eta(x) > 0 \), such that \(\mu = \lambda \oplus \eta \). Therefore \(\mu \) is semisimple.

(2) \(\Rightarrow \) (3). Suppose \(\mu \in L(M) \) is the sum of a family of strictly proper simple \(L \)-submodules \(\mu_i, (i \in I) \) of \(\mu \) where \(\mu_i(x) = \mu(x) \ \forall x \) for which \(\mu_i(x) > 0 \). To show that \(\mu \) is the direct sum of a family of such simple \(L \)-submodules.

Consider \(\mu = \sum_{i \in I} \mu_i \) where \(\mu_i \)'s are strictly proper simple \(L \)-submodules of \(\mu \) such that \(\mu_i(x) = \mu(x) \ \forall x \) for which \(\mu_i(x) > 0 \). Consider the family \(F = \{J \subseteq I : \sum_{j \in J} \mu_j \text{ is a direct sum} \} \) with respect to the ordinary inclusion. Then \(F \) contains a maximal element \(J \). Then as in the proof of (2) \(\Rightarrow \) (1) it is easy to see that \(\mu = \bigoplus_{j \in J} \mu_j \).

(3) \(\Rightarrow \) (2). This is obvious.