TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION 1 - 11

1.1 General 1
1.2 Categorisation of Warships 1
1.3 Structural Features of Warships 2
1.4 Structural Behaviour and Failure Modes 3
1.5 Design Philosophy 4
1.6 Idealisation and Analysis of Structures 6
1.7 Uncertainties in Ship Structural Analysis 8
1.8 Scope and Objectives 9
1.9 Organisation of the Thesis 11

CHAPTER 2

STRUCTURAL ANALYSIS OF WARSHIPS 12 - 42

2.1 Introduction 12
2.2 Approximations in Structural Levels of Ships 12
2.3 Structural Modelling 13
2.4 Design Loads 14
 2.4.1 Global Loads 15
 2.4.2 Local Loads 18
2.5 Rule Book Based Structural Analysis and Design of Warships 20
 2.5.1 Introduction 20
2.5.2 Structural Analysis of Ships using Naval Engineering Standards
 2.5.2.1 Longitudinal Strength 20
 2.5.2.2 Local In-plane Strength 22
 2.5.2.3 Transverse Strength 23
 2.5.2.4 Shear Strength 23
 2.5.2.5 Torsion 24
 2.5.2.6 Permissible Stresses 24
2.5.3 Structural Design/Analysis using LRS Rules 24
2.6 Finite Element Analysis of Ship Structures 27
 2.6.1 Introduction 27
 2.6.2 Ship Structural Models for Finite Element Analysis 27
 2.6.2.1 Global Structure Model 28
 2.6.2.2 Hold Model 28
 2.6.2.3 Grillage Model 29
 2.6.2.4 Frame Model 29
 2.6.2.5 Local Structure Model 30
 2.6.3 Finite Elements for Ship Structural Analysis 30
 2.6.4 Boundary Conditions 32
2.7 Finite Element Formulations for Ship Structural Analysis 34
 2.7.1 Linear Elastic Analysis 34
 2.7.2 Nonlinear Analysis 35
 2.7.3 Ultimate Strength Analysis 36
2.8 Reliability Analysis 38
2.9 Summary 41

CHAPTER 3

LITERATURE REVIEW ... 43 - 60

3.1 Introduction 43
3.2 Ultimate Strength 43
3.3 Reliability 54
3.4 Conclusions 59
CHAPTER 4

NUMERICAL INVESTIGATIONS ON WARSHIP STRUCTURES USING FINITE ELEMENT METHOD ..61 - 99

4.1 Ship Details 61
4.2 Types of Analysis 63
4.3 Description of the Finite Element 64
4.4 Structural Models for Analysis 66
 4.4.1 Hold Model. 66
 4.4.2 Frame Model. 68
 4.4.3 Interstiffener Plating Model 68
 4.4.4 Boundary Conditions. 69
4.5 Loads. 69
 4.5.1 Loads on the Shell Plating 69
 4.5.2 Loads on the Decks 71
4.6 Linear Static Analysis 71
 4.6.1 Input and Output 71
 4.6.2 Hold Model 72
 4.6.3 Frame model 77
 4.6.4 Interstiffener Plating Model 82
4.7 Geometric Nonlinear Analysis 89
 4.7.1 Input and Output 90
 4.7.2 Hold Model 90
 4.7.3 Frame Model 92
4.8 Geometric and Material Nonlinear Analysis 93
 4.8.1 Input and Output 94
 4.8.2 Hold Model 94
 4.8.3 Frame model 96
4.9 Reliability Analysis 98
 4.9.1 General 98
 4.9.2 Calculation of Reliability Parameters 98
CHAPTER 5

SUMMARY AND CONCLUSIONS .. 100-102

REFERENCES ... 103-106