List of Figures

2.1 The major components of the radiation received by a radiometer . . . 12
2.2 Planck's black body radiation at different temperatures 13
2.3 A typical variation of Ocean surface emissivity with varying angle . . 18
2.4 A typical variations of emissivity at 6.6 GHz (a) SST and (b) SSW . 19
2.5 Effect of wind speed (surface roughness) on ocean brightness temper­
 ature, SSW W3 > W2 > W1 20
2.6 Transmission function of the cloud free atmosphere in the microwave
 spectral range . 23
2.7 MSMR Viewing Geometry . 31
3.1 Neurons . 40
3.2 A feed-forward neural network . 43
3.3 Single neuron . 44
3.4 Single perceptron learning . 49
3.5 NN architecture for the standard backpropagation algorithm of a three-
 layer perceptron (Cichocki et al 1993) 52
3.6 Sensitivity of T_B to geophysical parameters, the arrow indicates the
 SMMR frequencies, Wilheit (1979a) 54
3.7 Class-I neural network model configurations 56
3.8 Class-II neural network model configurations 57
4.1 Block diagram of retrieval algorithm development, testing and data quality evolution ... 60
4.2 Frequency distribution of simulated GP’s in training dataset (M.S-I, 29500 points), (a) WVC g/cm^2, (b) CLW g/cm^2, (c) SSW m/s, (d) SST K ... 62
4.3 Evolution of RMS error minimization for the training dataset for $4T_B - 1GP$ NN, configuration for WVC ... 70
4.4 Impact of noise in $(8T_B - 4GP)$ NN Model, RMS Vs Epochs 73
4.5 Impact of noise in $(8T_B - 4GP)$ NN Model, RMS Vs Global Iterations 73
4.6 Error distribution of class-II NN model $(8T_B - 4GP)$ on test dataset (M.S-II) for, (a) WVC (g/cm^2), (b) CLW (g/cm^2), (c) SSW (m/s), (d) SST(K) ... 76
4.7 Scatter plot of simulated and retrieved parameter using $(8T_B - 4GP)$ NN model, trained with M.S-I (29500 data points) and applied on test dataset (M.S-II, 132710 data points) 77
4.8 Global distribution of MSMR retrieved WVC (g/cm^2) using various NN models, MSMR operational products and Wentz products for SSM/I and TMI ... 80
4.9 Global distribution of MSMR retrieved CLW (g/cm^2) using various NN models, MSMR operational products and Wentz products for SSM/I and TMI ... 81
4.10 Global distribution of MSMR retrieved SSW (m/s) using various NN models, MSMR operational products and Wentz products for SSM/I and TMI ... 82
4.11 Global distribution of MSMR retrieved SST (K) using various NN models, MSMR operational products and Wentz products for SSM/I and TMI.

4.12 Monthly average of MSMR T_B at $2^\circ \times 2^\circ$ grid for Jul-1999 (a) T_B06V (b) T_B06H (c) T_B10V (d) T_B10H (e) T_B18V (f) T_B18H (g) T_B21V (h) T_B21H.

4.13 Across swath MSMR T_B, six month (Jun-Oct, 1999) data histogram of all channels.

4.15 Across swath SSM/I T_B, six month (Jun-Oct, 1999) data histogram of low resolution channels.

4.16 Instant across track SSW, (a) before and (b) after across track bias correction.

4.17 SSW retrieval using $(8T_B - 4GP)$ NN model, (a) before and (b) after across track bias correction and (c) the differences.

4.18 MSMR in-orbit data quality evaluation.

5.1 Comparison of MSMR derived WVC with Vaisala (after bias removal) (a)NN and (b)SR.
5.2 Inter-comparison of 2° x 2° averaged MSMR WVC with TMI and SSM/I finished products, (a) TMI versus MSMR NN, (b) SSM/I versus MSMR NN, (c) TMI versus MSMR SR, (d) SSM/I versus MSMR SR

5.3 Comparison of histogram of CLW from MSMR (a) MSMR NN and (b) MSMR finished product

5.4 Inter-comparison of 2° x 2° averages of MSMR cloud liquid water with TMI and SSM/I finished products, (a) TMI versus MSMR NN (b) SSM/I versus MSMR NN (c) TMI versus MSMR SR (d) SSM/I versus MSMR SR

5.5 Positions of collocated MSMR and ICOADS datasets (a) Ships (10,911 points) (b) buoys (2569 points)

5.6 Scatter plots of MSMR derived parameters with ICOADS ships (a) NN SSW (b) SR SSW (c) NN SST (d) SR SST

5.7 The residual ΔSST, MSMR (NN/SR) SST - ship SST are plotted against (a/b) MSMR NN/SR CLW, (c/d) MSMR NN/SR WVC, (e/f) MSMR NN/SR SSW The solid lines (blue) on each figure indicate the average residual, while the dashed lines (red) are ± one standard deviation from the mean

5.8 Scatter plots of MSMR NN/SR derived parameters with ICOADS buoys, (a) NN SSW (b) SR SSW (c) NN SST (d) SR SST

5.9 RMS error and bias, binned at every 1 m/s and 1 K for SSW and SST with references to ICOADS buoys respectively, for MSMR NN derived and finished products (a) SSW (b) SST
5.10 Time series of SSW with different NIOT buoys, MSMR NN derived and finished products

5.11 (a) Time series of SST with different NIOT buoys, MSMR NN derived and finished products, (b) Location of buoys

5.12 Inter-comparison of MSMR NN/SR derived SST (K) and SSW (m/s) with TMI finished products (a) TMI versus MSMR NN, SSW (b) TMI versus MSMR NN, SST (c) TMI versus MSMR SR, SSW (d) TMI versus MSMR SR, SST

5.13 Inter-comparison of MSMR NN/SR derived SSW (m/s) with SSM/I (Wentz) products (a) SSM/I versus MSMR NN, SSW (b) SSM/I versus MSMR SR, SSW

5.14 Global distribution of MSMR derived WVC (g/cm²) for Oct 9-10 1999, 2 day, averaged 2° x 2° box, (a) NN (b) SR and (c) NN-SR

5.15 Global distribution of MSMR derived CLW (g/cm²) for Oct 9-10 1999, 2 day, averaged 2° x 2° box, (a) NN (b) SR and (c) NN-SR

5.16 Global distribution of MSMR derived SSW (m/s) for Oct 9-10 1999, 2 day, averaged 2° x 2° box, (a) NN (b) SR and (c) NN-SR

5.17 Global distribution of MSMR derived SST (K) for Oct 9-10 1999, 2 day, averaged 2° x 2° box, (a) NN (b) SR and (c) NN-SR

5.18 Scatter plots of MSMR NN derived geophysical parameter with that of MSMR finish products, (a) WVC, (b) CLW, (c) SSW and (d) SST

5.19 Comparison of histogram of SSW from MSMR, (a) NN and (b) finished product

5.20 Positions of collocated TMI and ICOADS datasets (a) Ships (b) buoys
5.21 Scatter plots of TMI NN derived parameters with ICOADS ships (a)
NN SSW (b) SR SSW (c) NN SST (d) SR SST 136
5.22 Scatter plots of TMI derived parameters with ICOADS buoys (a) NN
SSW (b) SR SSW (c) NN SST (d) SR SST 138
5.23 Scatter plots of TMI NN derived geophysical parameter with that of
TMI finish products, a) WVC, b) CLW, c) SSW and d) SST . 140