<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1(a)</td>
<td>Block diagram of the riometer</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Diode switching circuit</td>
<td>22(a)</td>
</tr>
<tr>
<td>2.2</td>
<td>Riometer control circuit :</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Phase shift oscillator, diode switches, audio suppressor, sweep control circuit and phase sensitive detector</td>
<td>24(a)</td>
</tr>
<tr>
<td>(b)</td>
<td>Minimum detector, servo noise diode control circuits and noise diode power supply</td>
<td>24(b)</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of the broad side collinear array for receiving CR noise</td>
<td>29(a)</td>
</tr>
<tr>
<td>2.4</td>
<td>Sample records of cosmic radio noise at 25 and 21.3 MHz at Ahmedabad</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Sample records of CR noise at 45, 21.3 and 16.5 MHz at Thumba</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Records of 45 MHz and 21.3 MHz riometers at Ahmedabad</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>CR noise intensity at 45 and 21.3 MHz normalized to the minimum intensity at Ahmedabad</td>
<td>36(a)</td>
</tr>
<tr>
<td>2.8</td>
<td>Standard curve at 25 MHz and 21.3 MHz for Ahmedabad</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>CR noise intensity changes during the high altitude nuclear explosion of 9th July 1962 over Johnston island</td>
<td>40(a)</td>
</tr>
</tbody>
</table>
3.1 Monthly mean diurnal variation of total CR noise absorption at 21.3 MHz during 1963-65
(a) from January to June and (b) from July to December 42

3.2 Monthly mean diurnal variation of total CR noise absorption at 25 MHz during 1964-65
(a) from January to June and (b) from July to December 43

3.3 (a) Variation of diurnal maximum and daytime and nighttime separate averages of monthly mean absorption at 21.3 MHz from 1963-65
(b) Variation of daytime and nighttime separate averages of monthly mean absorption at 25 MHz from 1957-59 44

3.4 (a) Mass plot of the monthly mean total attenuation at 25 MHz against the corresponding f_{oF_2} values during 1959-60
(b) Mass plot of monthly mean total attenuation at 25 MHz against the corresponding f_{oF_2} values during 1962-65
(c) Mass plot of monthly mean total attenuation at 21.3 MHz against the corresponding f_{oF_2} values during 1963-65 46

3.5 (a) The mean curves corresponding to Fig. 3.4(a), (b) and (c)
(b) Log(dA/dfo) plotted against log(f_{oF_2}) corresponding to Fig. 3.5(a) 47

3.6 (a) Individual values of the total attenuation at 21.3 MHz plotted against f_{oF_2} for 12 hr May 1965 51
3.6(b) Log(dA/df_o) plotted against log(f_o F_2) corresponding to Fig.3.6(a) 51

3.7 Plot of n vs f_o F_2/f 53

3.8 The diurnal variation of the monthly mean values of the component of CR noise absorption independent of f_o F_2 A'_D at 21.3 MHz during 1964-65 54

3.9(a) Variation of noon A'_D at 21.3 and 25 MHz during 1964-65

(b) Logarithm of yearly average values of A'_D plotted against logarithm of frequency corresponding to Fig.3.9(a) 56

3.10(a) Individual values of total absorption at 21.3 MHz plotted against f_o F_2 for 20 hr in May 1965

(b) Mass plot of monthly mean total absorption at 21.3 MHz plotted against monthly mean f_o F_2 for nighttime during 1963-65 57(a)

3.11 The monthly mean diurnal variation of the f_o F_2 dependent absorption and the corresponding f_o F_2 for January, April, July and October during 1964-65 59

3.12(a) Variation of monthly mean values of the f_o F_2 dependent absorption at 21.3 MHz for 12 and 20 hrs and corresponding f_o F_2 during 1964-65

(b) Variation of monthly mean values of the f_o F_2 dependent absorption for 20 hr at 25 MHz and the corresponding f_o F_2 during 1957-59 60
4.1 Monthly mean diurnal variation of total absorption and \(f_0 F_2 \) for January, April, July and October from 1958 to 1964

4.2(a) Variation of the monthly mean diurnal maximum of the total attenuation at 25 MHz from 1958 to 1964, and

(b) The variation of monthly mean diurnal maximum of \(f_0 F_2 \) from 1958 to 1964

4.3(a) Variation of \(A'_D \) the component of absorption independent of \(f_0 F_2 \) forenoon hour from 1958-64

(b) The corresponding sunspot number variation

(c) Plot of sunspot number \(R \) vs \(A'_D \)

4.4 Variation of the ratio \(f_0 F_2^4/(A-A'_D) \) during 1958 to 1964: (a) for 12 hr, (b) for 20 hr and (c) variation of 10.7 cm flux and \(\tau_g \) corresponding to the same period

4.5 Nondeviative absorption of CR noise at 25 MHz attributable to altitude above 120 km (curve a) and square of electron density at the \(F_2 \) peak (curve b) for January, April, July and October 1957-58

4.6 Curve (a), nondeviative absorption at 21.3 MHz attributable to altitude above 120 km and curve (b), square of the electron density at \(F_2 \) peak for April, July and September 1964-65

4.7(a) The monthly mean diurnal variation of the total CR noise absorption at 25 MHz and the \((\cos \chi)^{0.75}\) variation of the calculated D region absorption for January, April, July and October 1957-58
4.7(b) Monthly mean diurnal variation of the total nondeviative absorption at 25 MHz in the F region (curve I) the calculated absorption in the bottomside (curve III) and the residual topside absorption (curve II) for 1957-58

4.8(a) Monthly mean diurnal variation of the total CR noise absorption at 21.3 MHz and the \((\cos \chi)^{0.75}\) variation of the calculated D region absorption for January, April, July and September during 1964-65

(b) Monthly mean diurnal variation of the total nondeviative absorption in the F region (curve I) the calculated bottomside absorption (curve III) and the residual topside absorption (curve II) at 21.3 MHz for January, April, July and September 1964-65

4.9 The diurnal variation of top to bottomside absorption at 25 MHz during 1957-58 and at 21.3 MHz during 1964-65

5.1 Electron density profiles from 120 to 900 km at 14 hr, April 1965 and 1957 using \(T_g\) (broken line) and using \((T_e + T_i)/2\) (solid line) 93(a)

5.2 Nondeviative absorption of CR noise at 25 MHz attributable to altitude above 120 km (curve 1) and that calculated at the same frequency from 120 to 1000 km using \(T_g\) as in HP model (curve 2) for April, July 1957 and January and October 1958

5.3 Nondeviative absorption of CR noise at 21.3 MHz attributable to altitudes above 120 km (curve 1) and that calculated at the same frequency from 120 to 1000 km using \(T_g\) as in HP model (curve 2) during 1964-65
5.4 Monthly mean diurnal variation of T_e deduced from CR noise absorption and the corresponding T_g for January, April, July and October 1957-58

5.5 Monthly mean diurnal variation of T_e deduced from CR noise absorption and the corresponding T_g for April, July and September 1964-65

5.6 $(T_e - T_i)$ assuming $T_i = T_g$, deduced from CR noise data curve (a) and that calculated according to Dalgarno's method

6.1 Monthly mean diurnal variation of total electron content n_t, electron content above F_2 peak n_a and that below F_2 peak n_b for January, April, July and October 1957-58

6.2 Monthly mean diurnal variation of n_t, n_a and n_b for April, July and September 1964-65

6.3 Diurnal variation of total electron content obtained from measurement of Faraday fading of signals from S66 satellite during summer 1965

6.4 Monthly mean diurnal variation of n_a/n_b for January, April, July and October 1957-58 (a) Monthly mean diurnal variation of n_a/n_b for April, July and September 1964-65

6.5 n_a/n_b obtained according to Faraday fading measurement from S66 satellite measured during summer 1965
6.6(a) Monthly mean diurnal variation of n_a/N_m for January, April, July and October 1957-58

(b) Monthly mean values of n_a/N_m for April, July and September during 1964-65

7.1 Records of SCNA's on 21.3 MHz observed at Ahmedabad during 1965-66

7.2 SCNA's recorded simultaneously on 25 and 21.3 MHz at Ahmedabad and on 21.3 MHz and 16.5 MHz at Thumba

7.3 Plot of log(ΔA) vs log($\cos\chi$)

7.4 Plot of log(ΔA) vs log(f) for Ahmedabad

7.5 Plot of log(ΔA) vs log(f) for Thumba

7.6 Hourly values of total attenuation during three magnetic storms superposed on the monthly mean values

7.7(a) The average diurnal variation of ΔA during two days when the storm is in progress

(b) Similar variation as in Fig.7.7(a) during storm in 1957

7.8(a) The hourly departure ΔA plotted for two days before and two days after the storm, as average for three storms

(b) ΔA plotted similar to Fig.7.8(a) for storms during 1957

7.9 Hourly values of attenuation during storms which produces decrease of attenuation for long duration
7.10 Hourly values of attenuation when a second storm occurs before the effect of a previous one subsides