GUIDE TO TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption of the Tables</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various Forms of the Local Field Correction Function $Y(Q)$</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Input Data Used in the Computations for Alkaline Earth Metals</td>
<td>112</td>
</tr>
<tr>
<td>4.2</td>
<td>Potential Parameters for Alkaline Earth Metals</td>
<td>113</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of First Zero (q_0/K_F) and Value $(q/2K_F)$ of the Present Pseudopotential Form Factors with Various Models for Alkaline Earth Metals</td>
<td>118</td>
</tr>
<tr>
<td>4.4</td>
<td>Binding Energy for Alkaline Earth Metals</td>
<td>119</td>
</tr>
<tr>
<td>4.5</td>
<td>Static Elastic Constants B_{11}, B_{12}, B_{44}, Shear Modulus B' and Bulk Modulus B for Calcium</td>
<td>124</td>
</tr>
<tr>
<td>4.6</td>
<td>Static Elastic Constants B_{11}, B_{12}, B_{44}, Shear Modulus B' and Bulk Modulus B for Strontium</td>
<td>125</td>
</tr>
<tr>
<td>4.7</td>
<td>Static Elastic Constants B_{11}, B_{12}, B_{44}, Shear Modulus B' and Bulk Modulus B for Barium</td>
<td>126</td>
</tr>
<tr>
<td>4.8</td>
<td>Pressure Derivatives of Second Order Elastic Constants for Alkaline Earth Metals</td>
<td>127</td>
</tr>
<tr>
<td>4.9</td>
<td>Calculated Slope of the Normalized Elastic Constants vs. The Compressed Volume for Alkaline Earth Metals</td>
<td>127</td>
</tr>
<tr>
<td>4.10</td>
<td>Third Order Contribution to the Total Energy for Alkaline Earth Metals</td>
<td>128</td>
</tr>
<tr>
<td>4.11</td>
<td>Zero Point Free Energy for Alkaline Earth Metals</td>
<td>133</td>
</tr>
<tr>
<td>4.12</td>
<td>Debye-Waller Factors and Mean Square Displacements for Calcium at Different Temperatures</td>
<td>140</td>
</tr>
<tr>
<td>4.13</td>
<td>Debye-Waller Factors and Mean Square Displacements for Strontium at Different Temperatures</td>
<td>141</td>
</tr>
</tbody>
</table>
4.14 Debye-Waller Factors and Mean Square Displacements for Barium at Different Temperatures

4.15 Isothermal Bulk Modulus BT at Different Temperatures for Alkaline Earth Metals

4.16 Linear Coefficient of Thermal Expansion for Alkaline Earth Metals at Zero Pressure

4.17 Comparison between Grüneisen Parameters with Experimental and Other Theoretical Values for Alkaline Earth Metals

4.18 Effect Temperature on Grüneisen Parameters for Alkaline Earth Metals

4.19 Radial (R_L) and Tangential (T_L) Force Constants at Different Temperatures for Calcium

4.20 Radial (R_L) and Tangential (T_L) Force Constants at Different Temperatures for Strontium

4.21 Radial (R_L) and Tangential (T_L) Force Constants at Different Temperatures for Barium

4.22 Interatomic Tensor Force Constants $K_{αβ}$ at Different Temperature for Calcium

4.23 Interatomic Tensor Force Constants $K_{αβ}$ at Different Temperature for Strontium

4.24 Interatomic Tensor Force Constants $K_{αβ}$ at Different Temperature for Barium

4.25 The SOEC and Bulk Modulus for Alkaline Earth Metals at Temperature 0°K

4.26 Dynamical Elastic Constants C_{11}, C_{12}, C_{44}, Shear Modulus C' and Bulk Modulus B for Calcium at 300°K

4.27 Dynamical Elastic Constants C_{11}, C_{12}, C_{44}, Shear Modulus C' and Bulk Modulus B for Strontium at 300°K

4.28 Dynamical Elastic Constants C_{11}, C_{12}, C_{44}, Shear Modulus C' and Bulk Modulus B for Barium at 300°K
4.29 Temperature Derivatives of Second Order Elastic Constants at 300°K

4.30 Deviation from Cauchy's Relation, Cauchy's Ratio, Poisson's Ratio and Young's Modulus in Alkaline Earth Metals

4.31 Propagation Velocities of Elastic Waves in Alkaline Earth Metals

4.32 Debye Temperature θ_D at 0°K for Alkaline Earth Metals

4.33 Comparison of Maximum Phonon Frequency ω_{max}, Mean Frequency $<\omega>$ and $(\omega^2)^{1/2}$ with Experiment for Alkaline Earth Metals

4.34 Calculated Values of Second Moment (Fundamental Frequency) (ω^2) for Alkaline Earth Metals

4.35 Calculated Values $\frac{\Delta\omega_{\text{eff}}}{\omega_{q,A}}$ at Some Symmetry Points for Alkaline Earth Metals

4.36 Electrical Resistivities Calculated from the Ziman Formula ρ_{ziman} from the Self-Consistent Treatment ρ_{se} and Mean Free Path for Liquid Alkaline Earth Metals

4.37 The Calculated Values of the Phase Shift and t-matrix Resistivities for Liquid Alkaline Earth Metals

4.38 Monovacancy Resistivity of Alkaline Earth Metals

4.39 Thermo-Electric Power for Liquid Alkaline Earth Metals

4.40 Distortion of Fermi Surface at Some Symmetry Points for Calcium and Strontium

4.41 Distortion of Fermi Surface at Some Symmetry Points for Barium

5.1 Input Data for Thorium

5.2 Pseudopotential Parameters for Thorium

5.3 Binding Energy and Bulk Modulus B for Thorium Static Elastic Constants B_{11}, B_{12}, B_{44} and B' for Thorium
5.4 Debye Waller Factors and Mean Square Displacement for Thorium at Different Temperatures

5.5 Volume Thermal Expansion and Isothermal Bulk Modulus for Thorium

5.6 The Grüneisen Parameter for Thorium

5.7 Radial (R_L) and Tangential (T_L) Force Constants at Different Temperatures for Thorium

5.8 Interatomic Tensor Force Constants $K_{\alpha\beta}$ at Different Temperatures for Thorium

5.9 Dynamical Elastic Constants C_{11}, C_{12}, C_{44}, C' and Bulk Modulus B for Thorium

5.10 Deviation from Cauchy's Relation, Cauchy's Ratio, Poisson's Ratio and Young's Modulus for Thorium

5.11 Propagation Velocities of Elastic Waves in Thorium