CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>v-vii</td>
</tr>
<tr>
<td></td>
<td>Guide to Tables</td>
<td>viii-xi</td>
</tr>
<tr>
<td></td>
<td>Guide to Figures</td>
<td>xii-xv</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1-14</td>
</tr>
<tr>
<td>1.1</td>
<td>Adiabatic Approximation</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>One Electron Approximation</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>CONSTRUCTION OF MODEL POTENTIAL FOR TRANSITION METALS AND HISTORICAL SURVEY</td>
<td>15-75</td>
</tr>
<tr>
<td>2.1</td>
<td>Construction of Model Potential</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>A Brief Historical Survey of Various Applications of Local Model Potentials to Completely Filled and Empty d-band Metals</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Conclusion</td>
<td>73</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>PHYSICAL PROPERTIES</td>
<td>76-110</td>
</tr>
<tr>
<td>3.1</td>
<td>Binding Energy</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Pressure</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Bulk Modulus</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Elastic Constants</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Third Order Correction to the Energy</td>
<td>82</td>
</tr>
<tr>
<td>3.6</td>
<td>Dynamical Matrix - Second and Third Order (Reciprocal-Space Analysis)</td>
<td>83</td>
</tr>
<tr>
<td>3.7</td>
<td>Frequency Spectra : Density of States</td>
<td>85</td>
</tr>
<tr>
<td>3.8</td>
<td>Debye-Waller Factor</td>
<td>86</td>
</tr>
</tbody>
</table>
3.9 X-Ray Characteristic Temperature θ_M and Mean Square Displacement 88
3.10 Harmonic Contribution of Free Energy 89
3.11 Lattice Heat Capacity 90
3.12 Debye Temperature 90
3.13 Thermal Pressure, Thermal Expansion and Isothermal Bulk Modulus 91
3.14 Interatomic Potential 93
3.15 Interatomic Force Constants 94
3.16 Temperature Dependent Interatomic Potential and Interatomic Force Constants 95
3.17 Dynamical Elastic Constants and Bulk Modulus 96
3.18 Deviation from Cauchy's Relation, Poisson Ratio and Young's Modulus 97
3.19 Propagation of Elastic Waves 98
3.20 Calculation of Second Moment 99
3.21 Temperature Dependence of the Phonon Frequencies 100
3.22 Pressure (Volume) Dependence of the Melting Temperature of Metals 101
3.23 Debye Temperature at 0°K 103
3.24 Liquid Metal Resistivity 103
3.25 Thermo-Electric Power 106
3.26 Monovacancy Resistivity 106
3.27 Scattering and Phase Shift 107
3.28 Resistivity (t-Matrix) 108
3.29 Asphericity of Fermi Surface 109
CHAPTER 4

RESULTS AND DISCUSSION

4.1 Determination of Potential Parameters 111

4.2 r-Space Representation of Pseudopotential 113

4.3 Comparison between Different Form Factors 116

4.4 Binding Energy 118

4.5 Equation of State 121

4.6 Static Elastic Constants and their Pressure Derivatives, Bulk Modulus 123

4.7 Third Order Correction to the Energy 128

4.8 Phonon Dispersion Curves 128

4.9 Density of States 131

4.10 Zero Point-Free Energy 133

4.11 Specific Heat and Debye Temperature 133

4.12 Debye-Waller Factor and Mean Square Displacement 139

4.13 Thermal Pressure 139

4.14 Thermal Expansion and Isothermal Bulk Modulus 143

4.15 Mode Grüneisen Parameters 144

4.16 Interatomic Potential Curves 150

4.17 Radial and Tangential Force Constants 152

4.18 Dynamical Elastic Constants and the Temperature Variation of Dynamical Elastic Constants 152

4.19 Dispersion Curves at 300°K 217

4.20 Dispersion Curves at b.c.c. Phase 217
4.21 Debye Temperature at 0°K 220
4.22 Calculation of $<\omega>, \omega_{\text{max}}, (\omega^2)^{1/2}$ and Second Moments (Fundamental Frequency) 220
4.23 Temperature Dependence of Phonon Frequency 222
4.24 Liquid Metal Resistivity 223
4.25 Monovacancy Resistivity 226
4.26 Thermo-Electric Power 226
4.27 Asphericity of Fermi Surface 227
4.28 Pressure (Volume) Dependence of Melting Temperature of Metals 228

CHAPTER 5 COMPREHENSIVE STUDY OF THORIUM 233-275
5.1 Introduction 233
5.2 Physical Properties of Thorium 239
5.3 Conclusion and Scope of the Future Work 273

APPENDIX A THREE BODY FORCES IN ALKALINE EARTH METALS 276-278

REFERENCES 279-305