List of Figures

Prologue:
Figure-1: Incidence of oral cancer at The Gujarat Cancer and Research Institute, Ahmedabad

Figure-2: (A) Prevention against ROS by antioxidant enzymes (B) Susceptibility to oral cancer against tobacco carcinogen compounds

Introduction & Review of Literature:
Figure-3: Estimated number of new cases and death of cancer (in thousand) in developed and developing countries (males) (Parkin et al, 2005)

Figure-4: Estimated number of new cases and death of cancer (in thousand) in developed and developing countries (female) (Parkin et al, 2005)

Figure-5: Estimated number of new cases and deaths due to cancer in India (males) (Notani, 2001)

Figure-6: Estimated number of new cases and deaths due to cancer in India, (females) (Notani, 2001)

Figure-7: Incidence of tobacco related cancer at the Gujarat Cancer and Research Institute, Ahmedabad

Figure-8: Role of tobacco and nitrosamines in Oral Cancer

Figure-9: Tobacco habits in India and Western countries

Figure-10: Structure of tobacco specific nitrosamines formed by nitrosation of tobacco alkaloids

Figure-11: Metabolic activation of BaP to DNA adduct

Figure-12: Metabolism of NNK and NNAL compounds

Figure-13: Schematic representation of ROS targets and their aftermaths.

Figure-14: Metabolism of L-arginine to citrulline and nitric oxide

Figure-15: Role of nitric oxide in carcinogenesis

Figure-16: Nitric oxide exerts direct DNA damage

Figure-17: Mechanism of lipid peroxidation by ROS

Figure-18: Pathway of cyclooxygenase induction by NNK in U937 macrophages (Rioux and Castonguay, 2000)
Figure-19: Redoxs reactions of glutathione by the enzymatic pathways

Materials and Methods:

Figure-20: HPLC analysis of urinary nicotine and cotinine

Figure-21: Chromatographs for nicotine and cotinine standards

Figure-22: Standard curves for different concentrations of nicotine and cotinine against area under curve

Figure-23: GSH standard curve for thioehter

Figure-24: Standard curve for cadmium concentration

Figure-25: Wavelength scan for NO$_2$+NO$_3$ estimation

Figure-26: Standard curve for NO$_2$+NO$_3$ concentration

Figure-27: Principle of Anitp53antibodies ELISA

Results:

Figure-28: NO$_2$+NO$_3$ levels in different tobacco products

Figure-29: Representative HPLC patterns of urinary nicotine and cotinine in controls

Figure-30: Representative HPLC patterns of urinary nicotine and cotinine in patients

Figure-31a: Urinary nicotine levels in the subjects

Figure-31b: Urinary cotinine levels in the subjects

Figure-32: Mean levels of urinary thioether in the subjects

Figure-33: Mean urinary NO$_2$+ NO$_3$ levels in the subjects

Figure-34: ROC curves for comparison of urinary nicotine, cotinine, thioether and NO$_2$+NO$_3$ levels between: (a) NHT and WHT, (b) NHT and patients with OPC and (c) NHT and oral cancer patients.

Figure-35: Plasma NO$_2$+NO$_3$ levels (Mean±SE) in the subjects

Figure-36: Plasma prostaglandin E2 levels (Mean±SE) in the subjects

Figure-37: Plasma MDA levels (Mean±SE) in the subjects

Figure-38: Erythrocyte SOD activities (Mean±SE) in the subjects
Figure-39: Erythrocyte catalase activities (Mean±SE) in the subjects

Figure-40: Plasma GST activities (Mean±SE) in the subjects

Figure-41: Plasma GR activities (Mean±SE) in the subjects

Figure-42: Erythrocyte GST activities (Mean±SE) in the subjects

Figure-43: Erythrocyte GR activities (Mean±SE) in the subjects

Figure-44: Plasma thiols levels (Mean±SE) in the subjects

Figure-45: Comparison of plasma GST and antip53antibodies as well as erythrocytes SOD levels between patients with early and advanced oral cancer

Figure-46: Erythrocyte catalase activities in patients with different pathological tumor differentiation

Figure-47: Plasma thiol levels in patients with different pathological tumor differentiation

Figure-48: ROC curves for comparison of the biomarkers between (a) controls and patients with OPC, (b) controls and oral cancer patients and (c) patients with OPC and oral cancer patients

Figure-49: Representative genotype for GSTM1 in oral cancer patients

Figure-50: Erythrocyte levels of the biomarkers in PT, CR and NR

Figure-51: Comparison of plasma biomarkers levels between PT, CR and NR

Figure-52: Plasma prostaglandin E2 in CR and NR

Figure-53: Plasma antip53antibody levels in CR and NR

Figure-54: Representative patterns of antip53antibodies levels in CR and NR patients of oral cancer

Discussion:

Figure-55: Malignant phenotype