<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Title</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic drawing of friction stir welding</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of the three main stages of FSW (a) plunge phase (b)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>translational and rotational motion of the tool through the plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) tool extraction</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic drawing showing micro structural zones in a friction stir</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>weld</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic drawing of the FSW tool</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic showing the principle of a Skew-Stir™ tool</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Various variants of Whorl™ tool</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Design of a Triflute™ tool</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Onion rings in the cross section of a FSW</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Heat transfer in tool and work piece in friction stir welding</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Local heat input from the shoulder</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Cause and effect diagram for FSW</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental set up for heat transfer analysis</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental set up showing CNC machine, DAQ system and computer</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Layout of thermocouples</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration of thermocouples</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental set up for FSW of 6061 T6 with 6061 T6</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Image of defect free friction stir welded samples obtained at different welding parameters (a) 750 rpm and 50 mm/min, (b) 1000 rpm and 50 mm/min, (c) 1250 rpm and 50 mm/min, (d) 750 rpm and 100 mm/min, (e) 1000 rpm and 100 mm/min and (f) 1250 rpm and 100 mm/min</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>Image obtained from micro hardness tester at 200 gms load for 15 seconds</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Dimensions of specimen for tensile test prepared according to EN 8: 1995</td>
<td>62</td>
</tr>
</tbody>
</table>

x
3.9 Image of computer controlled tensometer
3.10 Image of TIG specimen
3.11 Experimental set up for FSW between aluminum 1100 to 6061 dissimilar aluminum alloy
3.12 Experimental set up for copper joining by FSW
3.13 Image of friction stir welded copper joint being cut on CNC electric discharge wire cut machine
3.14 Image of tensile test of copper joint being carried out using on universal tensile testing machine
3.15 Experimental setup for FSW between pure copper and AA 6061 T6
3.16 Image of tensile specimen with extensometer for Al-Cu joint
4.1 Top view of tool shoulder
4.2 Boundary conditions imposed during FSW
4.3 Meshed model of FSW joint
4.4 (a) Heat flux boundary conditions
4.4 (b) Convection boundary conditions
4.5 Contact and target elements for tool and work piece
4.6 Thermal boundary conditions for tool and work piece
4.7 (a) Mechanical boundary condition for clamping of workpiece
4.7 (b) Mechanical boundary condition for tool and work piece
5.1 (a) Microstructure of parent material
5.1 (b) Microstructure transition zone
5.1 (c) Microstructure of weld nugget
5.2 Micro hardness profile of friction stir welded specimen of AA 6061
5.3 Image of fractured tensile specimen
5.4 (a) Measured temperature-time distribution at location 8mm from the weld centre at 50 mm/min
5.4 (b) Measured temperature-time distribution at location 12 mm from the weld centre at 50 mm/min
5.4 (c) Measured temperature-time distribution at location 16 mm from the weld centre at 50 mm/min
5.4 (d) Measured temperature-time distribution at location 25 mm from the weld centre at 50 mm/min
5.5 (a) Measured temperature-time distribution at location 8 mm from the weld centre at 100 mm/min
5.5 (b) Measured temperature-time distribution at location 12 mm from the weld centre at 100 mm/min
5.5 (c) Measured temperature-time distribution at location 16 mm from the weld centre at 100 mm/min
5.5 (d) Measured temperature-time distribution at location 25 mm from the weld centre at 100 mm/min
5.6 (a) Temperature distribution of thermocouple at a distance 8 mm away from the weld centre at 50 mm/min
5.6 (b) Temperature distribution of thermocouple at a distance 8 mm away from the weld centre at 100 mm/min
5.7 (a) Numerical temperature distribution at 1250 rpm and 50 mm/min
5.7 (b) Numerical temperature distribution at 1000 rpm and 50 mm/min
5.7 (c) Numerical temperature distribution at 750 rpm and 50 mm/min
5.8 (a) Numerical temperature distribution at 1250 rpm and 100 mm/min
5.8 (b) Numerical temperature distribution at 1000 rpm and 100 mm/min
5.8 (c) Numerical temperature distribution at 750 rpm and 100 mm/min
5.9 (a) Comparison of Experimental and Numerical temperature distribution at 1250 rpm and 50 mm/min
5.9 (b) Comparison of Experimental and Numerical temperature distribution at 1000 rpm and 50 mm/min
5.9 (c) Comparison of Experimental and Numerical temperature distribution at 750 rpm and 50 mm/min
5.10 Micro hardness variations with temperature across the weld.
5.11 SEM image of fractured tensile specimen no. 2
5.12 (a) Longitudinal stress at 750 rpm and at welding speed of 50 mm/min
5.12 (b) Longitudinal stress at 1000 rpm and at welding speed of 50 mm/min
5.12 (c) Longitudinal stress at 1250 rpm and at welding speed of 50 mm/min
5.13 Comparison of longitudinal stress at 750, 1000 and 1250 rpm and at welding speed of 50 mm/min

5.14 (a) Force distribution in Z direction

5.14 (b) Force distribution in Y direction

5.14 (c) Force distribution in X direction

5.15 (a) Image of groove defect

5.15 (a) Image of tunnel defect

5.16 Semicircle streaks at higher welding speed

5.17 Macrostructure of TIG joint

5.18 Macrostructure of FSW joint

5.19 Microstructure of weld zone of TIG

5.20 Micro hardness distribution for TIG and FSW joint

5.21 Image of fractured tensile specimen for base, FSW and TIG joint

5.22 Fractograph for FSW joint

5.23 Fractograph for TIG joint

5.24 Photo image of defect free FSW copper joint

5.25 Photo image of copper joint with welding defect

5.26 (a) Microstructure of parent material of copper

5.26 (b) Microstructure of transition zone of copper FSW joint

5.26 (c) Microstructure of stir zone of copper FSW joint

5.27 Micro hardness distribution near the weld section at mid thickness for copper joint

5.28 Photo image of parent metal and FSW copper joint after fracture

5.29 (a) Microstructure of parent 1100

5.29 (b) Microstructure of transition zone (HAZ and TMAZ) and stir zone

5.29 (c) Microstructure of stir zone at higher magnification

5.30 Micro hardness profile of friction stir welded specimen of 1100-6061 AA

5.31 Image of fractured surfaces of tensile test joints of base, 6061-6061, 6061-1100 and 1100-1100

5.32 (a) Microstructure of stir zone for Cu-Al FSW joint
5.32 (b) Microstructure of stir zone for Cu-Al FSW joint 148
5.33 Micro hardness distribution of friction stir welded Cu-6061 AA 149
5.34 (a) Top image of friction stir welded tensile specimen of Cu-Al joint 150
5.34 (b) Bottom image of friction stir welded tensile specimen of Cu-Al joint 150
5.35 Response graph (means) of tensile strength 154
5.36 Response graph (S/N ratio) of tensile strength 154
5.37 Pie chart showing percentage contribution of factors (means) 159
5.38 Fractography of FSW joint for optimum condition 161