REFERENCES


17. http://www.twi.co.uk/j32k/unprotected/band_1/fsawintro.html


204


the resultant residual stresses in friction stir processing operations”, Manufacturing 

44. Rajesh S.R, Han Sur Bang, Woong Seong Chang, Heung Ju Kim, Hee Seon Bang, 
Chong In Oh and Jae Seon Chu, “Numerical determination of residual stress in 
friction stir weld using 3D-analytical model of stir zone”, Material Processing 

stresses and microstructure in 2024 T3 aluminum friction stir butt welds”, 

46. Staron P, Kocak M, Williams S, “Residual stresses in friction stir welded Al 
sheets”, Applied Physics A, Materials Science and Processing, pp. 1161-1162, 
2002.

47. Reynolds A.P, Tand Wei, Gnaupel Herold and Prask H, “Structure, properties and 

properties on fatigue crack propagation in friction stir welded 2024-T351 

49. Norman A.F, Drazhner V, Prangnell P.B, “ Effect of welding parameters on the 
solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy” 

Butterworths, London.

51. Moreira P.M.G.P, deFigueiredo M.A.V, deCastro P.M.S.T, “Fatigue behaviour of 
of FSW and MIG weldments for aluminum alloys”, Theoretical & applied fracture 

52. Zhao Juan, Jiang Feng, Jian Haigen, Wen Kang, Jiang Long and Chen Xiaobo, 
“Comparative investigation of tungsten inert gas and friction stir welding 
characteristics of Al-Mg-Sc alloy plates”, Materials and Design, vol. 31, pp. 306- 
311, 2010.


209


108. ANSYS™ software, Release 11.


216


160. MINITAB™ Statistical software Release 15.


