CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>STUDIES ON POTASSIUM SCHÖNITRE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - 143</td>
</tr>
</tbody>
</table>

PART I

CHAPTER 1

GENERAL INTRODUCTION

1:1 Fertilizer Requirements of India 1

1:2 Fertilizer Raw Materials and Their Availability in India 2

1:3 Aim and Scope of the Work Presented in This Thesis 11

CHAPTER 2

THE NATURE OF POTASSIUM, MAGNESIUM AND SULPHUR OCCURING IN SOIL AND THEIR INFLUENCE ON CROP GROWTH

2:1 Role of Potassium, Magnesium and Sulphur in Plant Growth 14

2:2 Uptake of Potassium, Magnesium and Sulphur 22

2:3 Inter-ionic Antagonism and Synergism with Special Reference to Potassium and Magnesium 25

CHAPTER 3

EXPERIMENTAL

3:1 Materials and Equipments 31

3:2 Analytical Methods 33

3:3 K-Mg Exchange Equilibrium 40

3:4 Effect of Adsorbed Potassium and Magnesium on Physical Properties of Soils 54
CHAPTER 3

3:5 Influence of Other Fertilizers When Used in Conjunction with Potassium Schoenite 56

3:6 Fertilizer Trials with Potassium Schoenite 56

RESULTS AND DISCUSSIONS 58 - 135

4:1 The Nature and Properties of Soils Under Investigation 58

4:2 Exchange Characteristics of Soils 63
 i) Replacing power of equilibrating solution 64
 ii) Selectivity of Soils for potassium 79
 iii) Adsorption of Potassium by Soils 86
 iv) Effect of Anion on K-Mg Exchange Equilibrium 98
 v) Suitability of Ion-Exchange Equations in Respect of K-Mg Exchange Equilibrium 101

4:3 Effect of Potassium Schoenite on Some Physical Properties of Soils 109
 i) Soil Reaction 109
 ii) Dispersion Coefficient 112
 iii) Hydraulic Conductivity 114

4:4 Potassium Schoenite Fertilizer Trials on Different Crops 115
 i) Groundnut 115
 ii) Tobacco 124
 iii) Potato 126
 iv) Sugarcane 127

4:5 Influence of Other Fertilizers when Used Along with Potassium Schoenite 128
CHAPTER 5
SUMMARY AND CONCLUSIONS 136 - 143

PART II
STUDIES ON SEAWEED MANURE 144 - 190

CHAPTER 6
GENERAL INTRODUCTION 144 - 154

6:1 Seaweed Resources of India 145
6:2 Composition of Seaweeds 146
6:3 Role of Organic Manure in Crop Production 149
6:4 The Suitability of Organic Waste Material As Manure 152

CHAPTER 7
EXPERIMENTAL 155 - 160

7:1 Material and Equipments 155
7:2 Analytical Methods 156
7:3 Nitrification of Seaweed Nitrogen 157
7:4 Composting of Seaweeds 157
7:5 Potculture Manural Experiment on Wheat 158
7:6 Field Manural Experiments on Bajara and Groundnut Crops 159

CHAPTER 8
RESULTS AND DISCUSSIONS 161 - 190

8:1 Nitrification of Seaweed Nitrogen 161
8:2 Composting of Seaweeds 168
8:3 Potculture Manural Experiments on Wheat 170
8:4 Field Manural Experiments on Bajara Crop 175
8:5 Field Manural Experiments on Groundnut Crop 182
8:6 Summary and Conclusions 189

BIBLIOGRAPHY 191 - 202