CHAPTER VI

FIXED POINT THEOREMS FOR MAPPINGS WHICH ARE NOT NECESSARILY CONTINUOUS

6.1 Some sufficient conditions have been obtained for self-mapping of a complete metric space which ensure a unique fixed point.

Let \((X,d)\) be a complete metric space. A self mapping \(T\) of \(X\) is said to be contraction if

\[
(6.1.1) \quad d(Tx, Ty) \leq \alpha d(x, y)
\]

for all \(x, y \in X\) and \(0 \leq \alpha < 1\). Then \(T\) has a unique fixed point in \(X\). Contraction mapping (6.1.1) is necessarily continuous and yet the fixed or common fixed points have been obtained for such type of mappings. For example Kannan [1] obtained a unique fixed point for a self mapping \(T\) of a complete metric space satisfying

\[
(6.1.2) \quad d(Tx, Ty) \leq \alpha [d(x, Tx) + d(y, Ty)]
\]

for all \(x, y \in X\), where \(0 \leq \alpha < \frac{1}{2}\). The mapping \(T\) satisfying (6.1.2) is not necessarily continuous.

Further, Ciric [2], Pachpatte [3], Taskovic [4], Gupta and Ranganthan [5] and many others obtained fixed points for different types of mappings of X, which are not necessarily continuous. Rhoades [6] gives a comprehensive list of various mappings, and most of these mappings are not necessarily continuous.

6.2 Now we shall prove the following theorem for mapping which is quite new.

Theorem: Let (X,d) be a complete metric space and $T : X \rightarrow X$ satisfy

$$d(T^{n+1}(x), T^{n+2}(y)) \leq d(T^n(x), T^{n+1}(x))$$
$$+ d(T^{n+1}(y), T^{n+2}(x)))$$
$$+ \beta [d(T^n(x), T^{n+2}(x))$$
$$+ d(T^{n+2}(y), T^{n+1}(x))$$
$$+ \gamma d(T^n(x), T^{n+1}(y))$$

for all x, y in X, α, β and γ are non-negative and $2\alpha + 2\beta + \gamma < 1$. Then T has a unique fixed point.

[3] Pachpatte, B.G. (1)
Proof : We prove the theorem for \(n = 0 \). The proof in the general case follows on similar lines, condition (6.2.1) is now

\[
(6.2.2) \quad d(Tx, \tau^2 y) \leq \alpha [d(x, Tx) + d(Ty, \tau^2 x)] \\
+ \beta [d(x, T^2 x) + d(T^2 y, \tau^2 x)] \\
+ \gamma d(x, Ty)
\]

We define a sequence \(\{x_n\} \) as follows

\[
x_n = T(x_{n-1}) = T^n(x_0) \quad (n = 1, 2, \ldots)
\]

Then we have

\[
d(x_1, x_2) = d(Tx_0, \tau^2 x_0) \\
\leq \alpha [d(x_0, Tx_0) + d(Tx_0, \tau^2 x_0)] \\
+ \beta [d(x_0, T^2 x_0) + d(T^2 x_0, \tau^2 x_0)] \\
+ \gamma d(x_0, Tx_0) \\
\leq \alpha [d(x_0, x_1) + d(x_1, x_2)] \\
+ \beta [d(x_0, x_2)] + \gamma d(x_0, x_1) \\
\leq (\alpha + \beta + \gamma) d(x_0, x_1) + (\alpha + \beta) d(x_1, x_2)
\]
\[(1-\alpha-\beta) \, d(x_1, x_2) \leq (\alpha+\beta+\gamma) \, d(x_0, x_1)\]

i.e.
\[d(x_1, x_2) \leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\beta}\right) \, d(x_0, x_1)\]

similarly
\[d(x_2, x_3) \leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\beta}\right)^2 \, d(x_0, x_1)\]

In general
\[d(x_n, x_{n+1}) \leq \left(\frac{\alpha+\beta+\gamma}{1-\alpha-\beta}\right)^n \, d(x_0, x_1)\]

since \[\left(\frac{\alpha+\beta+\gamma}{1-\alpha-\beta}\right) < 1\].

Therefore, the sequence \(\{x_n\}\) is a Cauchy sequence. Hence by the completeness of \(X\), \(\{x_n\}\) converges to some point \(u\) in \(X\), such that

\[\lim_{n \to \infty} x_n = u.\]

We shall show that \(u\) is the unique fixed point of \(T\).

Let \(t\) be any integer. Then

\[d(u, Tu) \leq d(u, x_t) + d(x_t, Tu)\]

\[= d(u, x_t) + d(Tu, T^2x_{t-2})\]
\[\leq d(u, x_t) + \alpha [d(u, T_u) + d(x_{t-2}, T^2 u)] \\
+ \beta [d(u, T^2 u) + d(T^2 x_{t-2}, T^2 u)] \\
+ \gamma d(u, T x_{t-2}) \\
\leq d(u, x_t) + \alpha [d(u, T_u) + d(x_{t-1}, T^2 u)] \\
+ \beta [d(u, T^2 u) + d(x_t, T^2 u)] \\
+ \gamma d(u, x_{t-1}) \\
\leq d(u, x_t) + \alpha [d(u, T_u) + d(x_{t-1}, T^2 u)] \\
+ \beta d(u, x_t) + \gamma d(u, x_{t-1}) \\
(1-\alpha) d(u, T_u) \leq d(u, x_t) + \alpha d(x_{t-1}, T^2 u) \\
+ \beta d(u, x_t) + \gamma d(u, x_{t-1}). \]

The expression on the right hand side can be made arbitrary small by choosing \(t \) to be sufficiently large.

Hence \(d(u, T_u) = 0 \)

i.e. \(u = T_u \).
Therefore, \(u \) is a fixed point of \(T \).

Suppose \(v \) be another fixed point of \(T \).

Then

\[
d(u, v) = d(Tu, v^2) \\
\leq \alpha [d(u, Tu) + d(Tv, v^2)] + \beta [d(v, v^2) + d(T^2v, v^2)] + \gamma d(u, Tv)
\]

\[
d(u, v) \leq \alpha d(v, u) + \beta d(v, v) + \gamma d(u, v)
\]

\[
(1 - \alpha - \beta - \gamma) d(u, v) \leq 0
\]

i.e. \(u = v \).

Therefore, \(T \) has a unique common fixed point \(u \).

This completes the proof.

6.3 More recently in 1980, Brain Fisher [7] has proved the following theorem.

Theorem (2) : If \(S \) and \(T \) are mappings of a complete metric space \(X \) into itself satisfying the inequality.

\[(6.3.1) \quad [d(Sx, Ty)]^2 \leq bd(x, Sz) d(x, Ty) + cd(y, Sz) d(y, Ty)\]

for all \(x, y\) in \(X\), where \(b, c > 0\) and

\[(6.3.2) \quad [b + (b^2 + 4b)^2][c + (c^2 + 4c)^2] < 4\]

Then \(S\) and \(T\) have a unique common fixed point.

Further, Fisher obtained the particular case of above theorem by taking \(S = T\) and \(b = c\) given as follows

Theorem (3): If \(T\) is a self-mapping of a complete metric space \((X, d)\) satisfying the inequality

\[(6.3.3) \quad [d(Tx, Ty)]^2 \leq c[d(x, Tx) d(x, Ty)] + d(y, Tx) d(y, Ty)]\]

for all \(x, y\) in \(X\), where \(0 \leq c < \frac{1}{2}\). Then \(T\) has a unique fixed point.

6.4 Now we shall prove the following theorem:

Theorem (4): Let \((X, d)\) be a complete metric space and let \(T : X \rightarrow X\) satisfying the inequality
(6.4.1) \[[d(Tx, T^2y)]^2 \leq c [d(x, Tx) d(x, T^2x) \]
\[+ d(T^2y, T^2x) d(Ty, T^2x)] \]
for all \(x, y \) in \(X \), and \(c \) a non-negative constant such that \(0 \leq c < \frac{1}{2} \). Then \(T \) has a unique fixed point in \(X \).

Proof: We define a sequence of elements \(\{x_n\} \) in \(X \) as follows:

Let \(x_0 \) be any arbitrary element in \(X \), and let \(x_n = T(x_{n-1}) = T^n(x_0) \) for \(n = 1, 2, \ldots \).

Then by (6.4.1), we have

\[
[d(x_1, x_2)]^2 = [d(Tx_0, T^2x_0)]^2
\]
\[\leq c [d(x_0, Tx_0) d(x_0, T^2x_0) \]
\[+ d(T^2x_0, T^2x_0) d(Tx_0, T^2x_0)] \]
\[\leq c d(x_0, x_1) d(x_0, x_2) \]
\[\leq c d(x_0, x_1) [d(x_0, x_1) + d(x_1, x_2)] \]
\[\leq c[d(x_0, x_1)]^2 + c d(x_0, x_1) d(x_1, x_2) \]

By noting that the quadratic equation \(x^2 = \alpha x + \alpha \) has the roots...
\[x = \left[a \pm \left(a^2 + 4a \right) \right] / 2. \]

Hence it follows that

\[d(x_1, x_2) \leq q \cdot d(x_0, x_1), \]

where \(q = \left[c + (c^2 + 4c)^{1/2} \right] / 2 < 1 \)

for \(0 \leq c < 1/2 \).

Similarly

\[\left[d(x_2, x_3) \right]^2 = \left[d(Tx_1, T^2x_1) \right]^2 \]

\[\left[d(x_2, x_3) \right]^2 \leq c \left[d(x_1, x_2) \cdot d(x_1, x_3) \right. \]

\[\left. + d(x_2, x_2) \cdot d(x_2, x_3) \right] \]

which gives on further simplification,

\[d(x_2, x_3) \leq q \cdot d(x_1, x_2) \]

\[\leq q^2 \cdot d(x_0, x_1). \]

So, in general, we have

\[d(x_n, x_{n+1}) \leq q^n \cdot d(x_0, x_1) \]

since \(q < 1 \), it follows that the sequence \(\{x_n\} \) is a Cauchy sequence. Now from the completeness of \(X \), there exists some \(u \) in \(X \), such that

\[\lim_{n \to \infty} (x_n) = u. \]
Now, we shall show that \(u \) is the fixed point of \(T \). Consider

\[
[d(u_n, x_n)]^2 = [d(u_n, T x_{n-1})]^2 = [d(u_n, T^2 x_{n-2})]^2
\]

\[
\leq c [d(u_n, u) d(u, T^2 u)
+ d(T^2 x_{n-2}, T^2 u) d(T x_{n-2}, T^2 u)]
\]

\[
\leq c [d(u_n, u) d(u, T^2 u)
+ d(x_n, T^2 u) d(x_{n-1}, T^2 u)]
\]

On letting \(n \) tends to infinity, we get \([d(u_n, u)]^2 = 0 \) which implies that \(u \) is the fixed point of \(T \).

Now, suppose that \(v \) is another fixed point of \(T \) in \(X \) such that \(v \neq u \), then \(d(u, v) > 0 \).

Further, consider

\[
[d(u, v)]^2 = [d(u_n, T^2 v)]^2
\]

\[
\leq c [d(u_n, u) d(u, T^2 u)
+ d(T^2 v, T^2 u) d(T v, T^2 u)]
\]

\[\leq 0, \]

a contradiction to our supposition. Hence it follows that \(u = v \) and so, \(u \) is the unique fixed point of \(T \).

This completes the proof.