List of Figures

Figure A: Location of Tiruppur in Tamil Nadu, India
Figure B: Major Activities in Tiruppur Hosiery Industry (Source: Nelliyat, 2005)
Figure C: Existing Physico-chemical Textile Effluent Treatment Process. Courtesy: Ion Exchange (India) Ltd.
Figure D: Schematic of operations involved in textile cotton industry and the main pollutants from each step (adapted from EPA (1997); Mattioli et al. (2002); Dos Santos et al. (2006)). AOX: Adsorbable Organic Halogens.
Figure E: Examples of dye-auxochromes and chromophores for azo and Anthraquinone dyes
Figure F: Different modes of dye bioremediation. Decolorization using (a) mixed cultures, (b) isolated organisms, and (c) isolated enzymes
Figure G: Proposed pathway for the peroxidases-catalysed degradation of 4-(4′-sulfo phenyl azo)-2, 6-dimethylphenol by Pyricularia oryzae (Chivukula and Renganathan, 1995).
Figure H: Proposed mechanism for the reduction of azo dyes by whole bacterial cells (modification of Keek et al. (1997).
Figure 1.1: Dye molecule reacting with cellulose (nucleophilic substitution)
Figure 1.2: Photographs taken at different localities in and around the Emperor Textiles Pvt. Ltd., Tiruppur, Tamil Nadu, India.
Figure 1.3: Photographs of the dye samples, mother culture plate collection and the procedure of decolorization.
Figure 1.4: Flasks showing the decolorization of reactive black HFGGR in nutrient broth as the medium.
Figure 1.5: Flasks showing the decolorization of reactive red in nutrient broth medium.
Figure 1.6: Flasks showing the decolorization of colonial red in nutrient broth medium.
Figure 1.7: Flasks showing the decolorization of reactive blue in nutrient broth medium.
Figure 1.8: Spectrum of Colonial Red before and after decolorization. (Solid line – Native dye; dashed line – after decolorization).

Figure 1.9: Spectrum of Reactive Black HFGR dye before and after decolorization. (Solid line – Native dye; dashed line – after decolorization).

Figure 1.10: Spectrum of Reactive Yellow I dye before and after decolorization. (Solid line – Native dye; dashed line – after decolorization).

Figure 1.11: Spectrum of Reactive Yellow II dye before and after decolorization. (Solid line – Native dye; dashed line – after decolorization).

Figure 2.1: Absorption spectrum of the Disperse Red F3BS dye in visible region (350 – 800 nm) following optimal conditions; Solid line and dotted line represent the spectrum of the dye before and after decolorization respectively.

Figure 2.2: Absorption spectrum of the Disperse Yellow F3B dye in visible region (350 – 800 nm) following optimal conditions; Solid line and dotted line represent the spectrum of the dye before and after decolorization respectively.

Figure 2.3: Absorption spectrum of the Disperse Yellow GR dye in visible region (350 – 800 nm) following optimal conditions; Solid line and dotted line represent the spectrum of the dye before and after decolorization respectively.

Figure 2.4: Flasks showing the decolorization of dyes in comparison with respective control in Nutrient broth. A – Disperse Red F3BS; B – Disperse T Blue; C – Disperse Yellow F3B and D – Disperse Yellow GR.

Figure 3.1: Structure of Reactive Black HFGR

Figure 3.2: Structure of Disperse Red F3BS

Figure 3.3: Effect of temperature on the decolorization of Black HFGR by SK03

Figure 3.4: Effect of temperature on the decolorization of Black HFGR by SK20

Figure 3.5: Effect of temperature on the decolorization of Black HFGR by SK21

Figure 3.6: Effect of shaking and static conditions on the decolorization of Black HFGR by SK03

Figure 3.7: Effect of shaking and static conditions on the decolorization of Black HFGR by SK20
Figure 3.8: Effect of shaking and static conditions on the decolorization of Black HFGR by SK21

Figure 3.9: Effect of various pH on the decolorization of Black HFGR by SK03

Figure 3.10: Effect of various pH on the decolorization of Black HFGR by SK20

Figure 3.11: Effect of various pH on the decolorization of Black HFGR by SK21

Figure 3.12: Effect of various dye concentrations on the decolorization of Black HFGR by SK03.

Figure 3.13: Effect of various dye concentrations on the decolorization of Black HFGR by SK20

Figure 3.14: Effect of various dye concentrations on the decolorization of Black HFGR by SK21

Figure 3.15: Effect of various temperatures on decolorization of disperse red dye F3BS by UBL-02

Figure 3.16: Effect of shaking and static condition on decolorization of Disperse Red F3BS by UBL-02

Figure 3.17: Effect of various pH on the decolorization of Disperse Red F3B by UBL-02

Figure 3.18: Effect of various dye concentrations on decolorization of Disperse Red F3BS by UBL-2

Figure 3.19: Graph representing the absorption spectrum of the Reactive Black HFGR dye before and after decolorization followed by aeration (for oxidation of the dye); Solid line – spectrum of the dye; dashed line – spectrum of the decolorized dye; dotted line – spectrum of the decolorized and aerated dye.

Figure 3.20: Graph representing the absorption spectrum of Disperse Red F3BS following optimum conditions in minimal media; Solid line – die before decolorization; dotted line – dye after decolorization.

Figure 3.21: FTIR spectrum of Reactive Black HFGR before decolorization.

Figure 3.22: FTIR spectrum of Reactive Black HFGR after (micro-aerophilic) decolorization.

Figure 3.23 FTIR spectrum of Reactive Black HFGR after decolorization (aerated condition after micro-aerophilic decolorization process)
Figure 3.24: FTIR spectrum of Disperse Red F3BS before decolorization.

Figure 3.25: FTIR spectrum of Disperse Red F3BS after decolorization.

Figure 3.26: Chromatogram of Reactive Black HFGR, under white light (A) and UV illumination (B).

Figure 3.27: Chromatogram of Disperse Red F3BS, under white light (A) and UV illumination (B).

Figure 3.28: HPTLC 3D (a) and 2D (b) display scanned analysis of native form and decolorization products of Reactive Black HFGR.

Figure 3.29: HPTLC display scanned analysis of the native form of the dye – Reactive Black HFGR on Track 1 with 4 peaks.

Figure 3.30: HPTLC display scanned analysis of the (microaerophilic) decolorization products of Reactive Black HFGR on Track 2 with 5 peaks.

Figure 3.31: HPTLC display scanned analysis of the (aerated) decolorization products of Reactive Black HFGR on Track 3 with 5 peaks.

Figure 3.32: HPTLC 3D (a) and 2D (b) display scanned analysis of the native form and decolorization products of Disperse Red F3BS.

Figure 3.33: HPTLC display scanned analysis of the native form of the dye Disperse Red F3BS on Track 1 with 8 peaks.

Figure 3.34: HPTLC display scanned analysis of the decolorized products of Disperse Red F3BS on Track 2.

Figure 4.1: Flasks showing the decolorization of raw effluent in nutrient broth by the isolate JMC – UBL 27 under shaking condition.

Figure 4.2: Flasks showing the decolorization of raw effluent in nutrient broth by the isolate JMC – UBL 27 under static condition.

Figure 5.1: Graph showing Brassica nigra: Percentage of germination among the treatment groups.

Figure 5.2: Mean values of total height; root length and shoot length Brassica nigra on day 12.

Figure 5.3: Graph showing wet and dry weight of the plant under different treatments in Brassica nigra.
Figure 5.4: No. of Leaves per plant among all the treatments in *Brassica nigra*

Figure 5.5: Chlorophyll contents in *Brassica nigra* among all treatments

Figure 5.6: Levels of total carbohydrates in leaves of *Brassica nigra* among the four different treatments.

Figure 5.7: Levels of proteins in the leaves of *Brassica nigra* among the four different treatments.

Figure 5.8: Levels of reducing sugar in the leaves of *Brassica nigra* among the four different treatments.

Figure 5.9: Mean height (in cm) of the root, shoot and the total plant in *Cyamopsis tetragonolobus* under different treatments.

Figure 5.10: Wet weight of the *Cyamopsis tetragonolobus* under different treatments.

Figure 5.11: Number of leaves and nodes in *Cyamopsis tetragonolobus* under different treatments.

Figure 5.12: Chlorophyll contents in *Cyamopsis tetragonolobus* among all the treatment groups.

Figure 5.13: Length of the Pods among all the treatment groups.

Figure 5.14: Weight of individual pods in *Cyamopsis tetragonolobus* among all the treatments.

Figure 5.15: Yield per plant (*Cyamopsis tetragonolobus*) among all the treatments.

Figure 5.16: Gross yield (in Kg) in *Cyamopsis tetragonolobus* treatment group.

Figure 5.17: Total carbohydrates in the leaves of *Cyamopsis tetragonolobus* among the treatment groups.

Figure 5.18: Concentration of proteins in the leaves of *Cyamopsis tetragonolobus* among the treatment groups.

Figure 5.19: Levels of reducing sugar in the leaves of *Brassica nigra* among the treatment groups.

Figure 5.20: *Brassica nigra* grown in plastic trays under different treatments on day 10.

Figure 5.21: *Brassica nigra showing* the length of the plant under different treatments.
Figure 5.22: View of the field grown with *Cyamopsis tetragonolobus* under different treatments on day 15.

Figure 5.23: View of the field grown with *Cyamopsis tetragonolobus* under different treatments on day 25.

Figure 5.24: *Cyamopsis tetragonolobus* under the treatment of raw effluent (b), sludge of the chemically treated effluent (C), supernatant of the chemically treated effluent (D) and biologically treated effluent (E) in comparison to the control (A).

Scheme 1: Tentative mechanism for the anaerobic decolorization of Reactive Black HFGFR and metabolite formation.