A RELATED FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS ON TWO L-SPACES

R.K. Jain, J.K. Verma and Brian Fisher

Abstract. A new related fixed point theorem for two pairs of mappings on two L-spaces is obtained.

Key words and phrases. Two L-spaces, fixed point.

2000 AMS Subject Classification : 54H25.

1. PRELIMINARIES

Definition 1. [2]. Let \(N \) denote the set of all non-negative integers and let \(C \) be a class consisting of pairs \((\{x_n\}_{n \in N}, x) \), where \(\{x_n\}_{n \in N} \) is a sequence in a non-empty set \(X \) and \(x \) is a point in \(X \). We say that \(C \) is a convergence class (i.e. \(\{x_n\}_{n \in N} \) converges to \(x \)) if and only if it satisfies the following conditions:

(a) if \(x_n = x \in X \) for all \(n \in N \), then \((\{x_n\}_{n \in N}, x) \in C \),

(b) if \(\{x_n\}_{n \in N} \) converges to \(x \), then so does each subsequence of \(\{x_n\} \).

Then the pair \((X, C) \) is said to be an \(L \)-space.

Definition 2. [4]. Let \(d \) be a non negative real valued function on \(X \times X \), \(0 \leq d(x, y) < \infty \) for all \(x, y \in X \). Then the \(L \)-space \((X, \to) \) is said to be \(d \)-complete, if each sequence \(\{x_n\}_{n \in N} \) in \(X \) with \(\sum_{n=1}^{\infty} d(x_{n+1}, x_n) < \infty \), converges to a unique point in \(X \).

Definition 3. [1]. Let \(f : X \to X \) \((X \) is an \(L \)-space). If for each \(x \in X \), \(f^n (x) \to a \) in \(X \) implies \(f (f^n (x)) \to f(a) \), then \(f \) is called orbitally continuous.

Dealing with two \(L \)-spaces, Kanan [3] proved the following result.

Theorem 1. Let \((X, d) \) and \((Y, \rho) \) be \(d \)-complete \(L \)-spaces and suppose that \(T \) is an orbitally continuous mapping of \(X \) into \(Y \) and let \(S \) be a mapping of \(Y \) into \(X \) satisfying the inequalities

\[
d(STx, STx') \leq c \max \{d(x, x'), d(x, STx), d(x', STx'), d(x', STx), \rho(Tx, Tx')\},
\]

\[
\rho(TS,y, TSy') \leq c \max \{\rho(y, y'), \rho(y, TSy), \rho(y', TSy'), \rho(y', TSy), d(Sy, Sy')\}
\]

for all \(x, x' \) in \(X \) and \(y, y' \) in \(Y \), where \(0 \leq c < 1 \). Then \(ST \) has a unique fixed point \(z \) in \(X \) and \(TS \) has a unique fixed point \(w \) in \(Y \). Further, \(Tz = w \) and \(Sw = z \).
2. MAIN RESULT

We prove the following:

Theorem 2. Let \((X, d)\) and \((Y, \rho)\) be \(d\)-complete \(L\)-spaces, let \(A, B\) be mappings of \(X\) into \(Y\) and let \(S, T\) be mappings of \(Y\) into \(X\) satisfying the inequalities

\[
d(SAx_x, TBx\'} \leq c \max \{d(x, x'), d(x, SAx), d(x', TBx'), \sqrt{d(x, TBx')d(x', SAx)}, \rho(Ax, Bx')\},
\]

\[
\rho(BSy, ATy') \leq c \max \{\rho(y, y'), \rho(y, BSy), \rho(y', ATy), \sqrt{\rho(y, ATy')\rho(y', BSy)}, d(Sy, Ty')\}
\]

(1)\)

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\), where \(0 \leq c < 1\). If one of the mappings \(A, B, S\) and \(T\) is orbitally continuous, then \(SA\) and \(TB\) have a unique common fixed point \(z\) in \(X\) and \(BS\) and \(AT\) have a unique common fixed point \(w\) in \(Y\). Further, \(Az = Bz = w\) and \(Sw = Tw = z\).

Proof. Let \(x = x_0\) be an arbitrary point in \(X\). We define the sequences \(\{x_n\}\) in \(X\) and \(\{y_n\}\) in \(Y\) by

\[
Ax_{2n} = y_{2n-1}, \quad Sy_{2n-1} = x_{2n-1}, \quad Bx_{2n-1} = y_{2n}, \quad Ty_{2n} = x_{2n}
\]

for \(n = 1, 2, \ldots\).

Applying inequality (1), we get

\[
d(x_{2n+1}, x_{2n}) = d(SAx_{2n}, TBx_{2n-1})
\]

\[
\leq c \max \{d(x_{2n}, x_{2n-1}), d(x_{2n}, SAx_{2n}), d(x_{2n-1}, TBx_{2n-1}), \sqrt{d(x_{2n}, TBx_{2n-1})d(x_{2n-1}, SAx_{2n})}, \rho(Ax_{2n}, Bx_{2n-1})\}
\]

\[
= c \max \{d(x_{2n}, x_{2n-1}), d(x_{2n}, x_{2n+1}), d(x_{2n-1}, x_{2n}), \sqrt{d(x_{2n}, x_{2n})d(x_{2n-1}, x_{2n+1})}, \rho(y_{2n}, y_{2n+1})\}
\]

\[
= c \max \{d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n+1}), \rho(y_{2n}, y_{2n+1})\}
\]

\[
= c \max \{d(x_{2n-1}, x_{2n}), \rho(y_{2n}, y_{2n+1})\},
\]

(3)

since \(c < 1\).

Using inequality (1) again, it follows that

\[
d(x_{2n}, x_{2n-1}) \leq c \max \{d(x_{2n-1}, x_{2n-2}), \rho(y_{2n}, y_{2n-1})\}.
\]

(4)

Similarly, using inequality (2), we have

\[
\rho(y_{2n}, y_{2n+1}) \leq c \max \{\rho(y_{2n-1}, y_{2n}), d(x_{2n-1}, x_{2n})\}
\]

(5)
and
\[\rho(y_{2n-1}, y_{2n}) \leq c \max\{\rho(y_{2n-2}, y_{2n-1}), d(x_{2n-2}, x_{2n-1})\}. \] (6)

It now follows from inequalities (3) and (5) that
\[d(x_{2n+1}, x_{2n}) \leq c \max\{d(x_{2n}, x_{2n-1}), \rho(y_{2n-1}, y_{2n})\} \] (7)

and from inequalities (4) and (6) that
\[d(x_{2n}, x_{2n-1}) \leq c \max\{d(x_{2n-1}, x_{2n-2}), \rho(y_{2n-2}, y_{2n-1})\} \] (8)

It now follows from inequalities (5) to (8) that
\[d(x_{n+1}, x_n) \leq c \max\{d(x_n, x_{n-1}), \rho(y_n, y_{n-1})\}, \]
\[\rho(y_{n+1}, y_n) \leq c \max\{d(x_n, x_{n-1}), \rho(y_n, y_{n-1})\} \]

and by induction, we get
\[d(x_{n+1}, x_n) \leq c^{n-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\}, \]
\[\rho(y_{n+1}, y_n) \leq c^{n-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\} \]

for \(n = 1, 2 \ldots \).

Therefore
\[\sum_{n=1}^{\infty} d(x_{n+1}, x_n) \leq (1 - c)^{-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\}, \]
\[\sum_{n=1}^{\infty} \rho(y_{n+1}, y_n) \leq (1 - c)^{-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\} \]

and since \(X \) and \(Y \) are \(d \)-complete \(L \)-spaces, it follows that the sequence \(\{x_n\} \) has a limit \(z \) in \(X \) and the sequence \(\{y_n\} \) has a limit \(w \) in \(Y \).

Now suppose that \(A \) is orbitally continuous. Then
\[w = \lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} Ax_{2n} = Az. \]

Applying inequality (1), we have
\[d(SAz, x_{2n}) = d(SAz, TBx_{2n-1}) \]
\[\leq c \max\{d(z, x_{2n-1}), d(z, SAz), d(x_{2n-1}, TBx_{2n-1}), \sqrt{d(z, TBx_{2n-1}) d(x_{2n-1}, SAz)}, \rho(Az, y_{2n})\}. \]

Letting \(n \) to infinity, it follows that
\[d(SAz, z) \leq cd(SAz, z) \]

3
and since $c < 1$, we have

$$S_w = SAz = z.$$ \hspace{1cm} (9)

Now, using inequality (2), we have

$$\rho(BSw, y_{2n+1}) = \rho(BSw, ATy_{2n})$$

$$\leq c \max \{ \rho(w, y_{2n}), \rho(w, BSw), \rho(y_{2n}, ATy_{2n}),$$

$$\sqrt{\rho(w, ATy_{2n})\rho(y_{2n}, BSw), d(Sw, Ty_{2n})} \}.$$

Letting n to infinity, we obtain

$$\rho(BSw, w) \leq c \rho(w, BSw)$$

and since $c < 1$ we have

$$Bz = BSw = w.$$ \hspace{1cm} (10)

Using inequality (1) again, we have

$$d(z, Tw) = d(SAz, TBz)$$

$$\leq c \max \{ d(z, z), d(z, SAz), d(z, TBz),$$

$$\sqrt{d(z, TBz) d(z, SAz), \rho(Az, Bz)} \}$$

$$= cd(z, Tw)$$

and since $c < 1$ we, have

$$z = Tw = TBz.$$

The same results of course hold if one the mapping B, S, T is orbitally continuous instead of A.

To prove uniqueness, we suppose that SA and TB have a second fixed point z'. Then using inequality (2), we have

$$\rho(Bz', Az') = \rho(BSAz', ATBz'),$$

$$\leq c \max \{ \rho(Az', Bz'), \rho(Az', Bz'), \rho(Bz', Az'),$$

$$\sqrt{\rho(Az', Az') \rho(Bz', Bz'), d(SAz', TBz')} \}$$

$$= c \rho(Bz', Az')$$

and so $Bz' = Az'$ since $c < 1$.

Now using inequalities (1) and (2), we have

$$d(z, z') = d(SAz, TBz')$$

4
\[\leq c \max \{ d(z, z'), d(z, SAz), d(z', TBz'), \]
\[\sqrt{d(z, TBz')d(z', SAz), \rho(Az, Bz')} \}\]
\[= c \max \{ d(z, z'), d(z, z), d(z', z'), \]
\[\sqrt{d(z, z')d(z', z), \rho(Az, Bz')} \}\]
\[= c \rho(Az, Bz') \]
\[= c \rho(BSAz', ATBz) \]
\[\leq c^2 \max \{ \rho(Az', Bz), \rho(Az', Bz'), \rho(Bz, Az), \]
\[\sqrt{\rho(Az', Az)\rho(Bz, Bz'), d(SAz', TBz')} \}\]
\[= c^2 \max \{ \rho(Az, Bz'), d(z, z') \}\]
\[= c^2 d(z, z') \]

since \(c < 1 \), and so \(z = z' \).

It follows similarly that \(z \) is the unique fixed point of \(SA \) and that \(w \) is the unique fixed point of \(AT \) and of \(BS \). This completes the proof of the theorem.

On taking \(X = Y \) in Theorem 2, we obtain the following:

Corollary. Let \((X, d)\) be a complete \(L \)-space and let \(A, B, S, T \) be mappings of \(X \) into itself satisfying the inequalities
\[d(SAx, TBy) \leq c \max \{ d(x, y), d(x, SAx), d(y, TBy), \]
\[\sqrt{d(x, TBy)d(y, SAx), d(Ax, By)} \}, \quad (11) \]
\[d(BSx, ATy) \leq c \max \{ d(x, y), d(x, BSx), d(y, ATy), \]
\[\sqrt{d(x, ATy)d(y, BSx), d(Sx, Ty)} \} \quad (12) \]
for all \(x, y \) in \(X \), where \(0 \leq c < 1 \). If one of the mappings \(A, B, S \) and \(T \) is orbitally continuous, then \(SA \) and \(TB \) have a unique common fixed point \(z \) in \(X \) and \(BS \) and \(AT \) have a unique common fixed point \(w \) in \(Y \). Further, \(Az = Bz = w \) and \(Sw = Tw = z \).
References

R.K. Jain
C-62, University Campus, Dr.H.S.Gour University,
Sagar-470003 (M.P.), India

J.K. Verma
Govt. Chhatrasal P.G. College, Panna- 488001 (M.P.), India

B. Fisher
Department of Mathematics
University of Leicester, Leicester, LE1 7RH, England
e-mail: fbr@le.ac.uk
ULTRA SCIENTIST OF PHYSICAL SCIENCES

REPRINT
A fixed point theorem for multivalued mappings

J. K. VERMA

Department of Mathematics
Govt. P.G. College, Panna, PANNA (M.P.)-488001 (INDIA)

(Acceptance Date 16th April 2003)

Abstract

A fixed point theorem for multivalued mapping on an orbitally complete metric space is proved in the present paper which extends a results of Jain & Bohre.1,2

Key words: Multivalued Map, orbitally complete metric space.
AMS mathematics subject classification (2001): 54H25,47H10

1. Notations and Definitions:

Let (X,d) be a metric space and $B(X)$ be the set of all bounded subsets of X.

Definition 1.1: A multivalued function (or set valued mapping) F on X into X is a point to set correspondence $x \mapsto Fx$ such that Fx is a nonempty bounded subset of X for each $x \in X$.

Such a mapping will be denoted by $F : X \rightarrow B(X)$.

For any $x \in X$, $A,B \in B(X)$, we write

\[
\delta(A,B) = \inf \{d(x,a) / a \in A\},
\]

\[
\delta(A,B) = \sup \{d(a,b) / a \in A, b \in B\}.
\]

The function δ satisfies:

(i) $\delta(A,B) = \delta(B,A) \geq 0$,

(ii) $\delta(A,B) = 0 \Rightarrow A = B = \{a\}$

If $A = \{a\}$, we write $\delta(A,B) = \delta(a,B)$ and furthermore, if $B = \{b\}$, we write $\delta(A,B) = \delta(a,b) = d(a,b)$.

Definition 1.2: A sequence $\{A_n\}$ of sets in $B(X)$ is said to converge to the subject A of X if the following conditions are satisfied:

(i) for each a in A, there is a sequence $\{a_n\}$ such that $a_n \in A_n$ for all n and $a_n \rightarrow a$

(ii) for every $\varepsilon > 0$, there is an integer N such that $A_n \subset A_{\varepsilon}$ for all $n \geq N$, where A_{ε} is the union of all open spheres with centres in A and radius ε. The set A is then said to be the limit of the sequence $\{A_n\}$ and we write $\lim A_n = A$

$n \rightarrow \infty$

Definition 1.3: A multivalued map $X \rightarrow B(X)$ is said to be continuous at $x \in X$ if $x_n \rightarrow x$ in X implies $F(x_n) \rightarrow F(x)$ in $B(X)$.

\[x_n \rightarrow x\text{ in } X \text{ implies } F(x_n) \rightarrow F(x) \text{ in } B(X)\]
continuous on X if F is continuous at every point of X.

An orbit of F at a point $x_0 \in X$ is a sequence
\{$x_n\} \text{ in } X \text{ given by}

\[0 \text{ (F,x_0) = \{x_n/x_n \in Fx_{n-1}, n = 1,2,3,\ldots\}}\]

Definition 1.4: A metric space X is said to be F-orbitally complete if every Cauchy sequence which is a subsequence of an orbit of F at each point $x \in X$ converges to a point of X.

Definition 1.5: A single valued mapping T of X into X is orbitally continuous on X if for each $x \in X$, $\lim_{n \to \infty} T^n x = u \Rightarrow \lim_{n \to \infty} T(T^n x) = Tu$.

Definition 1.6: A point $z \in X$ is said to be a fixed point of a multivalued mapping $F: X \to B(X)$ if $z \in Fz$.

Finally, \overline{A} denotes the closure of A.

Main Results:

We prove the following.

Theorem 2.1: Let X be an F-orbitally complete metric space and $F: X \to B(X)$ be continuous mapping satisfying

\[
\alpha_1 \delta (Fx, Fy)' + \alpha_2 \delta (x, Fx) \delta (y, Fy)' - \min \left\{ \frac{d(x, Fx)d(y, Fy)}{d(x, y)} \right\},
\]

\[
\leq \beta d(x, y) \cdot d(y, Fy)'^{-1},
\]

for all distinct $x, y \in X$, where $r \geq 1$ is an integer, $\alpha_i (i = 1, 2, 3)$ and β are real numbers with $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 > \beta$ and $\beta - \alpha_3 > 0$, then there exists $x \in X$ such that $x \in \overline{Fx}$. If F is a point closed mapping, then F has fixed point.

Proof: Let $x_0 \in X$ be an arbitrary point in X, define sequence \{$x_n\}$ in X by

\[x_1 \in \overline{Fx}_0, x_2 \in \overline{Fx}_1, \ldots, x_n \in \overline{Fx}_{n-1}.\]

Let us suppose that $d(x_n, Fx_n) > 0$ for all $n = 0, 1, 2, 3, \ldots$ (otherwise for some positive integer n, $x_n \in Fx_n$) applying the condition (2.1) for $x = x_{n-1}$ and $y = x_n$ we have

\[
\alpha_1 \delta (Fx_{n-1}, Fx_{n-1})' + \alpha_2 \delta (x_{n-1}, Fx_{n-1})',
\]

\[
\delta (x_n, Fx_n)'^{-1} + \alpha_3 \delta (x_n, Fx_n)',
\]

\[+ \alpha_4 \frac{\delta (x_{n-1}, Fx_{n-1})'}{d(x_{n-1}, x_n)} - \min \left\{ \frac{d(x_{n-1}, Fx_{n-1})d(x_n, Fx_n)}{d(x_{n-1}, x_n)} \right\},
\]

\[
\leq \beta d(x_{n-1}, x_n) \cdot d(x_n, Fx_n)'^{-1}.
\]

\[
\Rightarrow \alpha_1 d(x_n, x_{n+1})' + \alpha_2 d(x_{n-1}, x_n) d(x_{n-1}, x_{n+1})^{-1},
\]

\[+ \alpha_3 d(x_{n-1}, x_n)',
\]
A fixed point theorem for multivalued mappings.

\[
\begin{align*}
&+ \alpha_4 \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_{n-1}, x_n)} \cdot \text{min.} \\
&\frac{d(x_{n-1}, x_n) d(x_n, x_n)}{d(x_{n-1}, x_n)} + \frac{d(x_{n-1}, x_n) d(x_n, Fx_n)}{d(x_{n-1}, x_n)} \\
&\leq \beta \frac{d(x_{n-1}, x_n) d(x_n, Fx_n)}{d(x_{n-1}, x_n)}^{\gamma-1} \\
&\Rightarrow \{ \alpha_1 + \alpha_3 + \alpha_4 \} d(x_n, x_{n+1})^\gamma + \alpha_2 d(x_{n-1}, x_n) d(x_n, x_{n+1})^{\gamma-1} \\
&\geq \{ \alpha_1 + \alpha_3 + \alpha_4 \} d(x_n, x_{n+1})^\gamma \leq (\beta - \alpha_2) d(x_{n-1}, x_n) d(x_n, x_{n+1})^{\gamma-1} \\
&\Rightarrow d(x_n, x_{n+1}) \leq \frac{\beta - \alpha_2}{\alpha_1 + \alpha_3 + \alpha_4} d(x_{n-1}, x_n) \\
&\text{Proceeding in this manner we obtain} \\
&d(x_n, x_{n+1}) \leq k' d(x_{n-1}, x_n) \leq k^2 d(x_{n-2}, x_n) \leq \cdots \leq k^n d(x_0, x_1).
\end{align*}
\]

Where

\[k' = \frac{\beta - \alpha_2}{\alpha_1 + \alpha_3 + \alpha_4} < 1\]

Since \(0 < k' < 1\), it follows that \(\{x_n\}\) is a Cauchy sequence in \(X\) and since \(X\) is orbitally complete, there is a point \(x \in X\) such that \(x_n \to x\). Now the continuity of \(F\) implies that \(Fx_n \to Fx\) in \(B(X)\).

It remains to show that \(d(x, Fx) = 0\) that is \(x \in Fx\).

Suppose \(y \in Fx\), then for any \(n\)

\[d(x, y) \leq d(x, x_n) + d(x_n, y)\]

and therefore

\[d(x, Fx) \leq d(x, x_n) + d(x_n, Fx)\]

Since \(x_n \to x\), for given \(\varepsilon > 0\) we can choose an \(N_1\) such that \(d(x_n, x) < \varepsilon / 3\) for all \(n \geq N_1\). On the other hand, since \(Fx_n \to Fx\), for the same \(\varepsilon\) we can choose an \(N_2\) such that

\[Fx_{n-1} \subset A_{\varepsilon/3} = U S (a, \varepsilon / 3)\]

for all \(n-1 \geq N_2\). Further, since \(x_n \in Fx_{n-1}\), there exists a \(y \in Fx_{n-1}\) such that

\[d(x, y) < \varepsilon / 3\]

and \(y \in Fx_{n-1} \subset U S (a, \varepsilon / 3)\)

implies that there exists an \(a \in Fx\) such that

\[d(a, y) < \varepsilon / 3\]

thus

\[d(x, Fx) \leq d(x, a) \leq d(x, y) + d(y, a) \leq \varepsilon / 3 + \varepsilon / 3 = 2 \varepsilon / 3\]

for all \(n-1 \geq N_2\). Let \(N = \max \{N_1, N_2\}\) then

\[d(x, Fx) \leq d(x, x_n) + d(x_n, Fx) < \varepsilon / 3 + 2 \varepsilon / 3 = \varepsilon\]

for all \(n \geq N\) and so \(x \in Fx\). Since \(\varepsilon\) is arbitrary.

If \(F\) is a point closed mapping i.e. \(Fx\) is closed for each \(x \in X\), then \(x \in Fx\), and therefore \(F\) has a fixed point. This completes the proof of the theorem.

If \(F\) is a single valued mapping \(T, r = 1\) in theorem 2.1, the following corollary is immediate:
Corollary 2.1:

Let X be orbitally complete and T be an orbitally continuous self-mapping of X satisfying

$$\alpha_1, d(Tx,Ty) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Tx)d(y,Ty)(d(x,y))^{-1}$$

- $\min \{d(x,Tx) d(y,Ty) (d(x,y))^{-1}, d(x,Tx)d(y,Tx)(d(x,y))^{-1}\} \leq \beta d(x,y)$

for all distinct $x,y \in X$, where $\alpha_i (i = 1,2,3)$ and β are real numbers with $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 > \beta$ and $\beta - \alpha_2 \geq 0$. Then for each $x \in X$, the sequence $\{T^n(x)\}_{n=1}^{\infty}$ converges to a fixed point of T.

Theorem 2.2: Let X be an F-orbitally complete metric space and $F: X \to B(X)$ be continuous mapping satisfying

$$\alpha_1 \delta(Fx,Fy) + \alpha_2 \delta(x,Fx) \delta(y,Fy)$$

$$\min \{d(x,Fx)d(x,Fy) d(y,Fy) d(y,Fx)\}$$

$$\leq \beta d(x,y) d(y,Fy) (d(x,y))^{-1} \min \{d(x,Fx), d(y,Fy)\}$$

for all $x,y \in X$ where $r \geq 1$ is an integer, $d(x,Fx) \neq 0$ and $d(y,Fy) \neq 0$, where α_1, α_2 and β are real numbers with $\alpha_1 + \alpha_2 > \beta$ and $\beta - \alpha_2 \geq 0$, then there exists $x \in X$ such that $x \in Fx$. If F is a point closed mapping then F has fixed point.

Proof: It is omitted as it is similar to that of theorem 2.1

Corollary 2.2:

Let X be orbitally complete metric space and T be an orbitally continuous self-mapping of X satisfying

$$\alpha_1 d(Tx,Ty) d(x,y) + \alpha_2 d(x,Tx) d(y,Ty)$$

$$\min \{d(x,Ty) d(y,Ty) d(y,Tx)\} \leq \beta d(x,y)$$

for all $x,y \in X$, $d(x,Tx) \neq 0$, and $d(y,Ty) \neq 0$, where α_1, α_2 and β are real numbers with $\alpha_1 + \alpha_2 > \beta$ and $\beta - \alpha_2 \geq 0$,

then for each $x \in X$ the sequence $\{T^n(x)\}_{n=1}^{\infty}$ converges to a fixed point of T.

I am thankful to prof. R.K. Jain for worthy guidance during the preparation of this paper.

References

1. Jain and Bohre, some Results on non-unique fixed points, J. Indian Acad. Math. 6(2) (1984).