CHAPTER IV

R_1-TOPOLOGICAL SPACES

The hierarchy of 'Regularity Axioms' studied by A.S. Davis [4] in 1961 included besides the R_0-axiom studied in chapter II of the present thesis, the R_1-axiom. The R_1-axiom is independent of T_0 and of T_1, but strictly weaker than T_2. However, $T_2 = R_1 + T_0$. Further, R_1-spaces were examined in some detail by M.G. Murdeshwar and S.A. Naimpally in [6] where they weakened the hypothesis from T_2 to R_1 in some well known results. They [7] also studied the R_1-axiom in the context of quasi-uniformity. The R_1-axiom is found to be well behaved as it is hereditary, productive, projective and topologically invariant. Recently, it has been noted in [3] that the R_1-property is preserved under almost homeomorphism. It was shown in [6] that in a paracompact space the R_1-axiom implies normality. This type of result in the context of various generalised paracompact properties has been recently discussed in [5]. Further, G.D. Richardson [9] has shown that in a locally compact T_1-space, the closed compact neighbourhoods of each point form a neighbourhood base.

In the present chapter we give a number of characterizations of the R_1-axiom and show that the
axioms R_1 and weakly Hausdorff introduced by B. Banaschewski and J. M. Maranda [2] are equivalent. Further, it is shown in an R_1-space that the closure of a compact set is the union of the closures of its points, and that locally compactness property is open hereditary. Finally, a condition is obtained under which a dense locally compact subset of an R_1-space is open.

1. Definitions

Definition 1.1. : In a topological space (X, \mathcal{T}), a set A is said to be a point-closure set if it can be expressed as the closure of a singleton set, and the complement of a point-closure set will be called a co-point-closure set.

Definition 1.2. [4] : A topological space (X, \mathcal{T}) is said to be an R_1 if for each pair of points $x, y \in X$, such that $\text{cl-}\{x\} \neq \text{cl-}\{y\}$ there are disjoint open sets U and V such that $x \in U$, $y \in V$.

2. Characterizations of R_1-axiom.

Every R_1-space is R_0 and in an R_0-space for any open set U, $x \in U$ implies $\text{cl-}\{x\} \subseteq U$. In fact, it was noted in [6] that a topological space is R_1 iff whenever
\(cl\{x\} \neq cl\{y\} \), \(cl\{x\}\) and \(cl\{y\}\) have disjoint open neighbourhoods.

It is worthwhile to note that if in the axiom of regularity the closed set is replaced by a point-closure set then the axiom so obtained is nothing but a restatement of the \(R_1 \)-axiom. This is so, for, in a topological space \(cl\{x\} \neq cl\{y\} \) implies either \(x \notin cl\{y\} \) or \(y \notin cl\{x\} \) and conversely. Thus, we have the following result.

A topological space \((X, \mathcal{T})\) is \(R_1 \) iff for any point-closure set \(A \) and \(x \) such that \(x \in X \setminus A \), there exist disjoint open sets \(U \) and \(V \) such that \(x \in U \), \(A \subset V \).

Persuing the above approach corresponding to the other characterizations of the axiom of regularity, we have the following interesting reformulations of the \(R_1 \)-axiom.

Theorem 2.1. In a topological space \((X, \mathcal{T})\) the following statements are equivalent.

(a) \((X, \mathcal{T})\) is \(R_1 \).

(b) For every co-point-closure set \(G \) and \(x \in G \) there exists an open set \(U \) such that \(x \in U \), \(cl\{U\} \subseteq G \).
(c) Any point-closure set is the intersection of all closed neighbourhoods containing it.

Proof: (a) implies (b): If \(G \) be a co-point-closure set containing \(x \) then \(X - G \) is a point-closure set such that \(x \not\in X - G \). Therefore, there are disjoint open sets \(U \) and \(V \) such that \(x \in U, (X - G) \subseteq V \) and hence, the sets \(\text{cl-}U \) and \((X - G) \) are disjoint. Therefore, the open set \(U \) is such that \(x \in U, \text{cl-}U \subseteq G \).

(b) implies (c): Let \(F \) be a point-closure-set and let \(F^* = \bigcap \{ \text{cl-}G : G \text{ is open and } F \subseteq G \} \). In fact, we will show that \(F = F^* \). Clearly, \(F \subseteq F^* \) and for the reverse inclusion we will show that each \(x \not\in F \) implies \(x \not\in F^* \). Now, \(X - F \) is a co-point-closure set and so for any \(x \not\in F \), there exists an open set \(U \) such that \(x \in U \subseteq \text{cl-}U \subseteq X - F \). Therefore, \(x \not\in \text{cl-}(X - \text{cl-}U) \) and hence, \(\text{cl-}(X - \text{cl-}U) \) being a closed neighbourhood of \(F \), \(x \not\in F^* \). It follows that any point-closure set is the intersection of all closed neighbourhoods containing it.

(c) implies (a): Obvious. This completes the proof of the theorem.

It is shown in chapter II, theorem 2.1, that a topological space is \(R_0 \) iff for every pair of points \(x, y \)
either \(\ker\{x\} = \ker\{y\} \) or \(\ker\{x\} \cap \ker\{y\} = \emptyset \). What can be said in this direction for an \(R_1 \)-space is given by the next result.

Theorem 2.2. A topological space \((X, \mathcal{T}) \) is \(R_1 \) iff for each pair of points \(x, y \in X \), such that \(\ker\{x\} \neq \ker\{y\} \), there exist disjoint open sets \(U \) and \(V \) such that \(x \in U, y \in V \). In fact, the sets \(U \) and \(V \) are such that \(\ker\{x\} \subseteq U, \ker\{y\} \subseteq V \).

Proof: It immediately follows from the lemma 2.1 of chapter II, which says that in a topological space, for any pair of points \(x, y, \text{cl-} x \neq \text{cl-} y \) iff \(\ker\{x\} \neq \ker\{y\} \).

In 1961, B. Banaschewski and J.M. Maranda [2] discussed the notion of a weakly Hausdorff property in connection with the proximity functions, a certain class of mappings from a set of all subsets of \(X \) into the set of all filters on \(X \). In their terminology it was shown that a strict extension \(X^* \) of a space \(X \) is weakly Hausdorff iff its filter trace on \(X \) is weakly Hausdorff. It has been noted by them there that \(T_0 \)-axiom amounts to saying that distinct points have distinct neighbourhood filters.

Definition 2.1. [2]: A topological space \((X, \mathcal{T}) \) is said to be weakly Hausdorff if any two distinct neighbourhood
filters of points are incompatible.

Any two filters \mathcal{F}_1 and \mathcal{F}_2 are said to be incompatible if the filter generated by \mathcal{F}_1 and \mathcal{F}_2 is improper, i.e. it coincides with the set of all subsets of the space (for details we may refer to [2]).

The fact that both the concepts of weakly Hausdorff and R_1-axiom are not distinct is given by the next result.

Theorem 2.3. A topological space is R_1 iff it is weakly Hausdorff.

Proof: It follows from the fact that in a topological space (X, \mathcal{T}), for any pair of points $x, y \in X, \text{cl} \{x\} \neq \text{cl} \{y\}$ iff their neighbourhood filters are distinct, and that x and y have disjoint open neighbourhoods iff their neighbourhood filters are incompatible.

3. Some Further Results on R_1-Spaces.

It was noted in [6] that in an R_1-space any compact set F and x such that $\text{cl} \{x\} \cap F = \emptyset$, have disjoint open neighbourhoods. The proof of this result depends
on the fact that for each $y \in F$, $\text{cl-} \{x\} \neq \text{cl-} \{y\}$.
Therefore, it is easy to see in an R_1-space that in each of the following cases any compact set F and x such that $x \not\in F$, have disjoint open neighbourhoods.

i) $\{x\} \cap \text{cl-} F = \emptyset$.

ii) Each $y \in F$ implies $\text{cl-} \{y\} \subset F$.

iii) Each $y \in F$ implies $\text{cl-} \{x\} \neq \text{cl-} \{y\}$.

iv) Each $y \in F$ implies $\ker- \{x\} \neq \ker- \{y\}$.

In a Hausdorff space a compact set is closed but in an R_1-space a compact set is closed if it contains the closure of each of its points. In fact we have the following result which is essentially due to Ivan L. Reilly [8].

Theorem 3.1. : In an R_1-space (X, τ) for any compact set F, $\text{cl-} F = \bigcup \{ \text{cl-} \{x\} : x \in F \}$.

Proof : Let F be a compact set of an R_1-space (X, τ) and let $F^* = \bigcup \{ \text{cl-} \{x\} : x \in F \}$. Now, we show that $\text{cl-} F = F^*$. Clearly $F \subseteq F^* \subseteq \text{cl-} F$ and for the reverse inclusion we will show that each $x \not\in F^*$ implies $x \not\in \text{cl-} F$.

Let an arbitrary point $y \in X$ be such that $y \not\in F^*$. Then, for all $x \in F^*$, $\text{cl-} \{x\} \neq \text{cl-} \{y\}$, and hence the space being R_1 there exist open sets $U_y^{(x)}$ and U_x such that $x \in U_x$, $y \in U_y^{(x)}$ and $U_x \cap U_y^{(x)} = \emptyset$. Then, the family
\(\mathcal{U} = \{ U_x : x \in F^* \} \) forms an open covering of the compact set \(F \) and hence has a finite subcover \(U_{x_1}, U_{x_2}, \ldots, U_{x_n} \).

Now, the set \(U_y = \bigcap_{i=1}^{n} U_y^{(x_i)} \) is an open neighbourhood of \(y \) which is such that \(U_y \cap F = \emptyset \). It follows that \(y \not\in \text{cl-}F \).

Therefore, \(F^* = \text{cl-}F \).

The above fact is sharpened by the next result.

Theorem 3.2. In an \(R_1 \)-space \((X, \mathcal{T}) \) an almost compact set \(F \) is closed iff \(F \) is such that for \(x \in F \), \(\text{cl-}\{x\} \subseteq F \).

Proof: The necessary part is clear and for the sufficiency, in an \(R_1 \)-space \((X, \mathcal{T}) \), let an almost compact set \(F \) be such that for each \(x \in F \), \(\text{cl-}\{x\} \subseteq F \). For an arbitrary point \(p \in X - F \) and all \(x \in F \), since \(\text{cl-}\{p\} \neq \text{cl-}\{x\} \), there exist open sets \(U_p^{(x)} \) and \(U_x \) such that \(p \in U_p^{(x)} \), \(x \in U_x \) and \(U_x \cap U_p^{(x)} = \emptyset \). This family \(\mathcal{U} = \{ U_x : x \in F \} \) is an open covering of \(F \). Since \(F \) is almost compact, there must be \(x_i \in F \), \(i = 1, 2, \ldots, n \) such that \(F \subseteq \bigcup_{i=1}^{n} \text{cl-}U_{x_i} \). Now, the set \(U_p = \bigcap_{i=1}^{n} U_p^{(x_i)} \) is an open set containing \(p \) such that \(U_p \subseteq X - F \). It follows that \(X - F \) is open and so \(F \) is closed.
In [6] it was shown that one point compactification of a topological space \(X \) is \(R_1 \) iff the space \(X \) is \(R_1 \) and locally compact; and hence, in a locally compact space the \(R_1 \)-axiom equals the complete regularity. Further, G. D. Richardson [9] has extended this result by showing that in a locally compact space, the \(R_1 \)-axiom coincides with the axiom by which the closed compact neighbourhoods of each point form a neighbourhood base. It is well known that the locally compact property is closed hereditary but the next result says that in \(R_1 \)-space it is open hereditary also.

Theorem 3.3. : Every open subset of a locally compact \(R_1 \)-space is locally compact.

Proof : Let \(G \) be an open set of a locally compact \(R_1 \)-space \((X, \mathcal{T})\) and \(x \) be an arbitrary point such that \(x \in G \). Since a locally compact \(R_1 \)-space is regular, there exists an open set \(U \) such that \(x \in U \subseteq \text{cl-}U \subseteq G \). The space \(X \) is locally compact, therefore there exists a compact neighbourhood \(V \) of \(x \). Now, \(V \cap \text{cl-}U \) is a neighbourhood of \(x \) in \(G \). Again, \(V \cap \text{cl-}U \) is compact because it is a closed subset of the compact set \(V \). It follows that \(G \) is locally compact.

The next result will give a condition under which a dense locally compact subset of an \(R_1 \)-space is open.
Theorem 3.4. : So that in an R_1-space a dense locally compact subset A is open it is necessary and sufficient that $x \in A$ implies $\text{cl}-\{x\} \subseteq A$.

Proof: The necessary part is clear and for the sufficiency let A be a dense locally compact subset of an R_1-space (X, \mathcal{T}) such that for $x \in A$, $\text{cl}-\{x\} \subseteq A$. For each $x \in A$, there must exist a neighbourhood G of x such that $G \cap A$ is compact. This is so because, A is locally compact. Let U_x be an open set such that $x \in U_x \subseteq G$. Let $p \in U_x$ and $\mathcal{U}(p)$ be the family of all neighbourhoods of p. Then the family $\mathcal{F} = \{ U_p \cap (G \cap A) : U_p \in \mathcal{U}(p) \}$ is the trace neighbourhood filter on $G \cap A$. Since A is dense in X, and since $G \in \mathcal{U}(p)$, the filter \mathcal{F} is proper on $G \cap A$. Now, $G \cap A$ is compact, therefore the filter \mathcal{F} must have a cluster point q in $G \cap A$. Evidently, q is again a cluster point of the neighbourhood filter $\mathcal{U}(p)$. From the assumption that the space X is R_1, it is clear that the cluster set of the filter $\mathcal{U}(p)$ is $\text{cl}-\{p\}$. Therefore, $q \in \text{cl}-\{p\}$ and hence, $\text{cl}-\{p\} = \text{cl}-\{q\}$. Thus, we see that for each $p \in U_x$ there exists $q \in A$ such that $\text{cl}-\{p\} = \text{cl}-\{q\}$. But $q \in A$ implies $\text{cl}-\{q\} \subseteq A$ and hence, $p \in A$. Therefore, $U_x \subseteq A$ and it follows that A is open.

It is well known that if f and g are any two continuous function from a topological space X to a T_2-space Y
then the set \(A = \{ x : f(x) = g(x) \} \) is closed in \(X \). For an \(R_1 \)-space, we have the following result:

Theorem 3.5. If \(f \) and \(g \) are any two continuous functions from any topological space \((X, \mathcal{T})\) to an \(R_1 \)-space \((X^*, \mathcal{T}^*)\) then the set \(A = \{ x : \text{cl}\{f(x)\} = \text{cl}\{g(x)\} \} \) is closed in \(X \).

Proof: For any \(y \in X \) such that \(y \notin A \) we have \(\text{cl}\{f(y)\} \neq \text{cl}\{g(y)\} \). Then from the assumption that \((X^*, \mathcal{T}^*)\) is \(R_1 \), there exist open sets \(U \) and \(V \) in \(X^* \) such that \(f(y) \in U \), \(g(y) \in V \) and \(U \cap V = \emptyset \). Clearly, \(f^{-1}(U) \cap g^{-1}(V) \) is an open neighbourhood of \(y \) in \(X \). Again, \(A \cap f^{-1}(V) \cap g^{-1}(U) \) is empty. If it is not so then, let \(z \in X \) be such that \(z \in A \cap \left[f^{-1}(U) \cap g^{-1}(V) \right] \) which would imply that \(f(z) \in U \), \(g(z) \in V \) and that \(\text{cl}\{f(z)\} = \text{cl}\{g(z)\} \), that is, \(U \cap V \neq \emptyset \). It follows that \(y \) is an interior point of \(X - A \), that is, \(X - A \) is open and so \(A \) is closed.
REFERENCES

