List of figures:

Fig.1: The Lycurgus cup appears (a) green in reflected light, (b) red in transmitted light and this cup is preserved in the British museum in London, (c) Colloidal dispersion of gold preserved in the Royal Institution, London

Fig.2: Nanomaterials having different dimensions

Fig.3: Schematic representation of variation of free-energy change as a function of nuclei radius during nucleation and growth

Fig.4: Schematic representation of nanoparticles stabilization by (a) electrostatic repulsion (b) steric repulsion/interaction

Examples of metal complexes [Alq₃(1π−π⁺), Eu(tta)₃phen(f-f), PtOEP(3π−π⁺), Ir(ppy)₃(3MLCT)] which shows intense photoluminescence

Fig.5: Splitting of 4fⁿ electronic energy levels due to coulomb repulsions, spin-orbit coupling and crystal field effect.

Fig.6: Energy levels diagram for the lanthanide aquo ions. The main luminescent levels are drawn in red, while the ground state level is indicated in blue

Fig.7: Energies for 4f →5d and CT transitions of trivalent lanthanide ions

Fig.8: Schemes of possible mechanisms for luminescence concentration quenching: (a) energy migration of among donors (circles) in a chain followed by its migration to a killer site (black circle) which act as non-radiative sink; (b) cross relaxation between pairs of centers. (Sinusoidal arrows indicate nonradiative decay)

Fig.9: Representative emission spectrum from ZnO nanocrystals obtained after excitation at 325 nm

Fig.10: X-Ray diagram of a typical reflection mode diffractometer

Fig.11: Schematic representation of SEM microscope
Fig.13: (a) Simplified ray diagram of TEM, (b) Mass-thickness contrast

Fig.14: Electron diffraction patterns from (a) single crystal, (b) polycrystalline materials and (c) nanocrystalline materials

Fig.15: (a) Principle of AFM imaging, (b) Variation of interaction force versus distance between the AFM tip and substrate

Fig.16: Principle of MAS NMR experiment

Fig.17: Schematic representation of spectrofluorimeter

Fig.18: XRD patterns of GaOOH nanomaterials prepared with different amounts of urea.

Fig.19: SEM images of GaOOH nanorods prepared with (a) 15 mmol, (b) 80 mmol, (c) 115 mmol and (d) 180 mmol of urea

Fig.20: XRD patterns of GaOOH sample prepared in presence of (a) 0 at % (b) 0.5 at % (c) 0.75 at % (d) 1 at % and (e) 2 at % of Eu$^{3+}$ ions.

Fig.21: XRD patterns of GaOOH samples prepared in presence of (a) 2 at % Tb$^{3+}$ and (b) 2 at % Dy$^{3+}$.

Fig.22: SEM images of GaOOH nanorods prepared in presence of (a) 0 at % Eu$^{3+}$ (b) 0.5 at % Eu$^{3+}$ (c) 1 at % Eu$^{3+}$ and (d) 2 at% Eu$^{3+}$.

Fig.23: FT-IR patterns (A and B) of GaOOH sample prepared in presence of (a) 0 at % (b) 0.5 at % (c) 0.75 at % (d) 1 at % (e) 2 at % of Eu$^{3+}$ ions and (f) amorphous Ga(OH)$_3$. The Raman spectrum from the representative samples are shown in Fig.23 (C).

Fig.24: GaOOH structure obtained using the software MOLDRAW, depicting the interaction of Eu$^{3+}$ ions with GaOOH lattice and collapse of its layered structure to form amorphous gallium and europium hydroxide. Colour code: Green spheres represent Gallium, red spheres represent oxygen and white spheres represent hydrogen. Dotted red lines represent hydrogen bonding.
Fig.25: XRD patterns corresponding to GaOOH nanorods treated with aqueous solution of Eu$^{3+}$ ion in presence of urea ~100°C for (a) 0 minutes (b) 30 minutes (c) 2 hours. The corresponding pattern obtained only with Eu$^{3+}$ ions in the absence of GaOOH is shown in Fig.25 (d).

Fig.26: Emission spectrum obtained after 280 nm excitation and excitation spectrum corresponding to 435 nm emission from GaOOH nanorods prepared in the absence of any Eu$^{3+}$ ions.

Fig.27: Emission spectrum (left) obtained at 350 nm excitation and excitation spectrum (right) corresponding to 615 nm emission from GaOOH nanorods prepared in presence of (a and d) 0.5 at % Eu$^{3+}$, (b and e) 0.75 at % Eu$^{3+}$, (c and f) 2 at % Eu$^{3+}$.

Fig.28: (a) Emission spectrum obtained by exciting the samples at 280 nm and (b) excitation spectrum for the emission at 575 nm from GaOOH nanorods prepared in presence of 1 at % Dy$^{3+}$ ions.

Fig.29: Decay curves corresponding to (a) 5D_0 level of Eu$^{3+}$ ions (b) 5D_4 level of Tb$^{3+}$ ions from GaOOH samples prepared with different amounts of Eu$^{3+}$, Tb$^{3+}$ ions, respectively. ($\lambda_{\text{exc}} = 270, 255$ nm and $\lambda_{\text{em}} = 615, 545$ nm for Eu$^{3+}$ and Tb$^{3+}$ doped GaOOH, respectively)

Fig.30: TG-DTA patterns of GaOOH nanorods prepared in presence of (a) 0 at % (b) 0.5 at % (c) 0.75 at % and (d) 1 at % Eu$^{3+}$ ions.

Fig.31: XRD patterns of as prepared, 500 and 900°C heated GaOOH nanorods

Fig.32: SEM images of GaOOH nanorods heated at (a) 500°C and (b) 900°C

Fig.33: XRD patterns of GaOOH samples containing 0, 0.5, 0.75, 1 and 2 at% of Eu$^{3+}$ ions after heat treatment at 500°C.

Fig.34: FT-IR spectra of GaOOH samples containing 0, 0.5, 0.75, 1, 2, 3 and 5 at % of
Eu$^{3+}$ ions after heat treatment at 500°C.

Fig. 35: XRD patterns of β-Ga$_2$O$_3$ doped with 0, 0.75, 1, 3 and 5 at % of Eu$^{3+}$ (peak marked * correspond to Eu$_2$O$_3$). Values in brackets show average crystallite size.

Fig. 36: TEM images of (a) 0, (b) 0.75, (c) 3 and (d) 5 at % Eu doped β-Ga$_2$O$_3$.

Fig. 37: (a) Emission spectra, (b) decay curve corresponding to 5D$_4$ level of Tb$^{3+}$ in Tb$^{3+}$ doped GaOOH, α-Ga$_2$O$_3$ and β-Ga$_2$O$_3$ nanomaterials. ($\lambda_{exc} = 255$ nm and $\lambda_{em} = 544$ nm).

Fig. 38: (a) Emission spectra of β-Ga$_2$O$_3$ nanomaterials doped with 0, 0.5, 1 and 2 at % Tb$^{3+}$ ions. The corresponding excitation spectra for 1 at % Tb$^{3+}$ doped sample, monitored at 460 and 544 nm emission, are shown in Fig. 38 (b).

Fig. 39: Decay curves corresponding to excited state of the host emission of β-Ga$_2$O$_3$ nanomaterials doped with 0, 0.5, 1 and 2 at % Tb$^{3+}$ ions.

Fig. 40: Emission spectrum (a) obtained after 260 nm excitation and excitation spectrum (b) corresponding to 575 nm emission from β-Ga$_2$O$_3$:Dy$^{3+}$ nanomaterials. Corresponding emission ($\lambda_{exc} = 280$ nm) and excitation ($\lambda_{em} = 613$ nm) spectrum from Ga$_2$O$_3$:Eu nanorods are shown in Fig. 40 (c and d).

Fig. 41: (a) Emission spectrum and (b) excitation spectrum from Ga$_2$O$_3$:Er$^{3+}$ nanorods. The excitation and emission wavelengths are 380 and 1535 nm, respectively.

Fig. 42: XRD pattern of (a) Sb$_2$O$_3$ sample prepared at room temperature in isopropanol medium. Corresponding patterns from the samples heated at 100, 200 and 400°C along with bulk Sb$_2$O$_3$ are shown in (b)–(e), respectively.

Fig. 43: (a and b) AFM images showing the nanorods of Sb$_2$O$_3$ at two representative regions of the sample. TEM and SAED images for the nanorods along with that of bulk sample are shown in (c)–(f), respectively.

Fig. 44: Emission spectra of (a) Sb$_2$O$_3$ nanorods and (b) bulk Sb$_2$O$_3$ as a function of
temperature. Room temperature emission spectra of as prepared Sb$_2$O$_3$ nanorods annealed at different temperatures are shown in (c). Excitation wavelength was 220 nm. Peaks marked * are artifacts.

Fig. 45: Raman spectrum of (a) as prepared Sb$_2$O$_3$ nanorods. The changes related to morphology/annealing are shown by arrows at ~260 cm$^{-1}$ and ~445 cm$^{-1}$. Enlarged view of the Raman spectrum corresponding to Sb–O–Sb stretching (b, d) and bending (c) modes of Sb$_2$O$_3$ nanorods annealed at various temperatures along with that of bulk sample are also shown. Fig.45 (b) shows peaks ‘A1’ and ‘A2’ for the 260 cm$^{-1}$ peak and Fig.45 (c) shows ‘B1’, ‘B2’ and ‘B3’ for the 445 cm$^{-1}$ peak. Encircled region in Fig.45 (d) shows the changes in the Sb–O–Sb stretching vibrations at various annealing temperatures.

Fig.46: XRD patterns of Sb$_2$O$_3$ nanorods prepared in presence of (a) 0 at % Eu$^{3+}$ and (b) 5 at % Eu$^{3+}$.

Fig.47: Emission spectrum from Sb$_2$O$_3$ nanorods prepared in presence of 5 at % Eu$^{3+}$ and obtained after (a) 220 nm excitation and (b) 395 nm excitation. The corresponding pattern from bulk Sb$_2$O$_3$ prepared in presence of 5 at % Eu$^{3+}$ obtained after 395 nm excitation is shown in Fig.47 (c). The inset of Fig.47 (b) shows the excitation spectrum monitored at 615 nm emission.

Fig.48: Emission spectrum obtained after excitation at 395 nm from europium hydroxide sample prepared by the same procedure as adopted for antimony oxide nanorods. The excitation spectrum corresponding to 615 nm emission is shown in the inset.

Fig.49: Decay curves corresponding to 5D$_0$ level of Eu$^{3+}$ in (a) Sb$_2$O$_3$ nanorods prepared in presence of Eu$^{3+}$ (b) Europium hydroxide sample prepared by the identical procedure as adopted for Sb$_2$O$_3$ nanorods and (c) bulk Sb$_2$O$_3$ prepared in presence of Eu$^{3+}$. Samples were excited at 395 nm and emission monitored at
Fig. 50: FT-IR patterns (a) and Raman Spectra (b) of Sb$_2$O$_3$ nanorods prepared in presence of different Eu$^{3+}$ concentrations.

Fig. 51: FT-IR patterns for the region corresponding to the OH stretching vibrations from (a) Sb$_2$O$_3$ nanorods (b) Sb$_2$O$_3$ nanorods with 10 at % Eu$^{3+}$.

Fig. 52: XRD patterns for the product obtained by the reaction between Sb$^{3+}$ and Eu$^{3+}$ ions taken in stoichiometric amounts and heated at different temperatures: (a) as prepared (b) 500°C and (c) 900°C.

Fig. 53: Emission spectra (a) and decay curves corresponding to the $^{5}D_0$ level of Eu$^{3+}$ (b) for the product obtained by the reaction between Sb$^{3+}$ and Eu$^{3+}$ ions taken in the stoichiometric ratio. Samples were excited at 395 nm and emission monitored at 612 nm.

Fig. 54: XRD patterns for (a) hexagonal GaPO$_4$ standard corresponding to JCPDS file no. 080497 (b) GaPO$_4$ nanoparticles, (c and d) GaPO$_4$ nanoparticles with 2.5 and 5 at % Eu$^{3+}$, respectively.

Fig. 55: TEM images of (a) GaPO$_4$ nanoparticles. The selected area electron diffraction pattern from nanoparticles is shown in Fig. 55 (b).

Fig. 56: Emission spectrum from GaPO$_4$ nanoparticles containing (a) 2.5 at % and (b) 5 at % Eu$^{3+}$ ions. The corresponding pattern from EuPO$_4$ nanoparticles is shown in Fig. 56 (c). All samples were excited at 260 nm.

Fig. 57: Emission spectrum of europium hydroxide sample prepared in glycerol medium by the identical method as that employed for GaPO$_4$ and EuPO$_4$ nanoparticles, except that urea rather than ammonium dihydrogen phosphate was used to create the alkaline environment and to prevent the formation of EuPO$_4$ phase.

Fig. 58: 31P MAS NMR patterns of GaPO$_4$ nanoparticles containing (a) 0 at % (b) 2.5 at
% (c) 5 at % and (d) 10 at % Eu3+ ions. Samples were spun at 10000Hz.

Fig.59: Schematic diagram of Eu3+ species present on the surface of the GaPO\textsubscript{4} nanoparticles.

Fig.60: FT-IR spectrum of GaPO\textsubscript{4} nanoparticles containing 0 % and 2.5 at % Eu3+

Fig.61: XRD Patterns of SbPO\textsubscript{4}:Tb3+ nanomaterials synthesized from (a) 20 ml glycerol, (b) 10 ml ethylene glycol and 10 ml glycerol, (c) 12 ml ethylene glycol and 8 ml glycerol and (d) 20 ml ethylene glycol.

Fig.62: FT-IR Spectra of SbPO\textsubscript{4}:Tb3+ samples obtained in (a) ethylene glycol medium, (b) glycerol medium and (c) mixture of ethylene glycol and glycerol medium (10 ml each).

Fig.63: TEM images of (a) SbPO\textsubscript{4}:Tb3+ nanoribbons and (b) SbPO\textsubscript{4}:Tb3+ nanoparticles. The selected area electron diffraction pattern from the sample and the high resolution TEM image of a nanoribbon are shown in Fig.63 (c and d) respectively.

Fig.64: Emission spectrum of (a) SbPO\textsubscript{4}:Eu3+, (b) SbPO\textsubscript{4}:Tb3+ nanoparticles/ nanoribbons obtained after 220 nm excitation. Insets show corresponding excitation spectrum monitored at 616 and 545 nm emission.

Fig.65: Emission spectrum of EuPO\textsubscript{4} sample obtained after 250 nm excitation.

Fig.66: Emission spectrum of (a) SbPO\textsubscript{4}: Eu3+ and (b) SbPO\textsubscript{4}: Tb3+ bulk materials prepared by solid state reaction (excitation wavelength was 220 nm). Insets show corresponding excitation spectrum monitored at 616 and 545 nm emission.

Fig.67: Emission spectra of SbPO\textsubscript{4} nanoparticles/ nanoribbons doped with 1, 2, 2.5, 5, 10, 20 and 25 at % Tb3+ ions. Samples were excited at 250 nm.

Fig.68: TEM images of (a) SbPO\textsubscript{4}:Ce3+(2.5%),Tb3+(5%) nanoribbons in silica and (b) SbPO\textsubscript{4}:Ce3+(2.5%),Tb3+(5%) nanoparticles in silica. A representative selected
area electron diffraction pattern and a high resolution TEM image the nanoribbon are shown in Fig. 68 (c and d) respectively.

Fig.69: Raman spectrum over the entire region (a) corresponding to un-doped SbPO₄, SbPO₄:Ce³⁺(2.5%),Tb³⁺(5%) and SbPO₄:Ce³⁺(2.5%),Tb³⁺(5%) samples dispersed in silica. The peak corresponding to the asymmetric stretching vibrations of PO₄ tetrahedra in these samples observed over the region of 1000-1080 cm⁻¹ is shown in Fig.69 (b).

Fig.70: FT-IR pattern corresponding to SbPO₄ nanoribbons/nanoparticles containing different concentrations of Tb³⁺ ions. The peak corresponding to the Sb-O stretching vibration in these samples observed over the region of 600-700 cm⁻¹ is shown in Fig.70 (b).

Fig.71: Raman spectrum corresponding to symmetric PO₄ stretching mode of (a) un-doped SbPO₄ (b) SbPO₄:Ce³⁺(2.5%),Tb³⁺(5%) and (c) SbPO₄:Ce³⁺(2.5%),Tb³⁺(5%) samples dispersed in silica.

Fig.72: Emission spectrum from nanoribbons/ nanoparticle of (a) SbPO₄:Tb³⁺(5%), (b) SbPO₄: Ce³⁺(2.5%), Tb³⁺(5%), and (c) SbPO₄: Ce³⁺(2.5%), Tb³⁺(5%) dispersed in silica. Samples were excited at 250 nm. Inset at the left side shows the emission spectrum of TbPO₄ samples prepared by the identical method as that adopted for other samples and the inset at the right side shows the Ce³⁺ emission from SbPO₄: Ce³⁺(2.5%), Tb³⁺(5%) sample obtained after 278 nm excitation. The peak marked “*” in the left inset is an artifact.

Fig.73: Decay curves corresponding to the ⁵D₄ level of Tb³⁺ ions from nanoribbons/ nanoparticles of (a) SbPO₄:Tb³⁺(5%), (b) SbPO₄:Ce³⁺(2.5%),Tb³⁺(5%), and (c) SbPO₄: Ce³⁺(2.5%), Tb³⁺(5%) dispersed in silica. The samples were excited at 250 nm and emission monitored at 544 nm.

xxxi
Fig.74: Schematic representation showing the effect of incorporating the nanoparticles in silica matrix.

Fig.75: Excitation spectrum corresponding to the $^{5}D_{4}\rightarrow ^{7}F_{5}$ transition of Tb$^{3+}$ ions (544 nm) from nanoribbons/ nanoparticles of (a) SbPO$_{4}$::Tb$^{3+}$(5%), (b) SbPO$_{4}$: Ce$^{3+}$(2.5%), Tb$^{3+}$(5%), and (c) SbPO$_{4}$: Ce$^{3+}$(2.5%), Tb$^{3+}$(5%) dispersed in silica.

Fig.76: XRD patterns of 2.5 at % Eu$^{3+}$ doped BiPO$_{4}$ samples prepared at room temperature, 100, 125 and 185°C.

Fig.77: TG-DTA pattern of BiPO$_{4}$ sample prepared at room temperature.

Fig.78: FT-IR spectra of BiPO$_{4}$ samples prepared at room temperature, 100, 125 and 185°C

Fig.79: TEM images of BiPO$_{4}$ samples prepared at (a) room temperature, (b) 100, (c) 125 and (d) 185°C. Inset shows the SEAD patterns of corresponding samples.

Fig.80: (a) Emission spectra of BiPO$_{4}$ samples prepared at room temperature, 75 and 185°C after excitation at 270 nm and (b) corresponding excitation spectra monitored at 615 nm emission.

Fig.81: XRD patterns of Bi$_{1-x}$La$_{x}$PO$_{4}$ (x = 0, 0.3, 0.5, 0.7, 1) nanomaterials prepared at 185°C

Fig.82: FT-IR patterns of Bi$_{1-x}$La$_{x}$PO$_{4}$ (x = 0, 0.3, 0.5, 0.7, 1) nanomaterials prepared at 185°C showing the regions (a) 480 – 680 cm$^{-1}$ and (b) 750 – 1300 cm$^{-1}$.

Fig.83: 31P MAS-NMR patterns of Bi$_{1-x}$La$_{x}$PO$_{4}$ (x = 0, 0.3, 0.5, 0.7, 1) nanomaterials prepared at 185°C.

Fig.84: XRD patterns of Bi$_{1-x}$Tb$_{x}$PO$_{4}$ (x = 0, 0.1, 0.25, 0.5, 1) nanomaterials prepared at 185°C

Fig.85: (a) Emission spectra obtained after excitation at 275 nm, (b) decay curves corresponding to $^{5}D_{0}$ level of Eu$^{3+}$ from BiPO$_{4}$:Eu$^{3+}$ nanoparticles containing
different amounts of \(\text{Eu}^{3+} \).

Fig. 86: (a) Emission spectra obtained after excitation at 255 nm, (b) decay curves corresponding to \(^{5}D_{4} \) level of \(\text{Tb}^{3+} \) ion from \(\text{BiPO}_{4}:\text{Tb}^{3+} \) nanorods prepared at 185°C.

Fig. 87: (a) Emission spectra from \(\text{BiPO}_{4}:\text{Tb}^{3+}(5 \text{ at} \%) \) and \(\text{BiPO}_{4}:\text{Eu}^{3+}(5 \text{ at} \%),\text{Tb}^{3+}(5 \text{ at} \%) \) nanomaterials after excitation at 255 nm. The corresponding excitation spectrum is shown in Fig. 87 (b) Decay curve corresponding to \(^{5}D_{4} \) level of \(\text{Tb}^{3+} \) from these samples are shown in Fig. 87 (c).

Fig. 88: (a) Emission spectrum obtained after excitation at 350 nm (b) excitation spectra monitored at 573 nm emission (c) decay curve corresponding to \(^{4}F_{9/2} \) level of \(\text{Dy}^{3+} \) ion in \(\text{BiPO}_{4}:\text{Dy}^{3+} \) nanorods.

Fig. 89: (a) Emission spectrum obtained after 402 nm excitation, (b) excitation spectra monitored at 597 nm emission and (c) decay curve corresponds to \(^{4}G_{5/2} \) level of \(\text{Sm}^{3+} \) in \(\text{BiPO}_{4}:\text{Sm}^{3+} \) nanorods.

Fig. 90: XRD patterns of \(\text{ZnGa}_{2}\text{O}_{4} \) nanoparticles prepared in solvents containing different values of \(\text{EG-H}_{2}\text{O} \) ratios.

Fig. 91: FT-IR spectra of \(\text{ZnGa}_{2}\text{O}_{4} \) nanoparticles prepared in solvents containing different amounts of \(\text{EG} \) and \(\text{water} \).

Fig. 92: (a) Emission spectra of \(\text{ZnGa}_{2}\text{O}_{4} \) nanoparticles prepared in solvents containing different ratios of \(\text{EG} \) and \(\text{H}_{2}\text{O} \). Corresponding excitation spectra are shown in Fig. 92 (b).

Fig. 93: Schematic representation of possible energy transitions in \(\text{ZnGa}_{2}\text{O}_{4} \) nanoparticles.

Fig. 94: XRD patterns of \(\text{ZnGa}_{2}\text{O}_{4} \) nanoparticles prepared with different concentration of \(\text{Ga}^{3+} \) ions.
Fig.95: FT-IR spectra of ZnGa$_2$O$_4$ nanoparticles prepared with different amounts of starting material.

Fig.96: TEM images (a, d), HREM images (b, e), SAED patterns (c, f) of ZnGa$_2$O$_4$ nanoparticles prepared with 1.44 and 22.96 mmol Ga, respectively.

Fig.97: (a) Emission spectra of ZnGa$_2$O$_4$ nanoparticles prepared by using different concentrations Ga$^{3+}$ after exciting the samples in the range of 250-290 nm and (b) corresponding excitation spectra.

Fig.98: XRD patterns of ZnGa$_{2-x}$In$_x$O$_4$ ($x = 0, 0.05, 0.1, 0.2, 0.3, 0.5$) nanoparticles.

Fig.99: (a) TEM image, (b) HRTEM image of ZnGa$_{1.5}$In$_{0.5}$O$_4$ nanoparticles. SAED pattern from these nanoparticles is shown in the inset of Fig.99 (a)

Fig.100: (a) Emission spectra of ZnGa$_{2-x}$In$_x$O$_4$ ($x = 0, 0.05, 0.2, 0.5$) nanoparticles after exciting samples in the UV region (260 to 280 nm). (b) Decay profile corresponding to blue emission from ZnGa$_{1.5}$In$_{0.5}$O$_4$ nanoparticles

Fig.101: Photograph of blue light emission from thin film of PMMA containing ZnGa$_{1.5}$In$_{0.5}$O$_4$ nanoparticles, on a quartz substrate. The excitation wavelength was 270 nm.

Fig.102: XRD patterns of undoped ZnGa$_2$O$_4$ and 5 at % Ce$^{3+}$ doped ZnGa$_2$O$_4$ nanoparticles

Fig.103: (a) Emission and excitation spectra of 5 at % Ce$^{3+}$ doped ZnGa$_2$O$_4$ nanoparticle and (b) excited state decay profile of Ce$^{3+}$ ($\lambda_{exc}=265$ nm, $\lambda_{em}=350$ nm)

Fig.104: (a) Emission spectra obtained after 280 nm excitation and (b) excitation spectra obtained after monitoring 615 nm and 460 nm emission along with (c) the decay curve corresponding to 5D_0 level of Eu$^{3+}$ in ZnGa$_{1.5}$In$_{0.5}$O$_4$ nanoparticles

Fig.105: (a) Emission spectrum and (b) 5D_4 decay profile of Tb$^{3+}$, from Tb$^{3+}$ doped ZnGa$_{1.5}$In$_{0.5}$O$_4$ nanoparticles. The excitation and emission wavelengths are 280
and 545 nm, respectively.

Fig.106: XRD patterns of MWO₄ (M = Ca, Sr, Ba) nanoparticles.

Fig.107: TEM image of (a and b) CaWO₄, (c) SrWO₄ and (d) BaWO₄ nanomaterials and inset of the images shows corresponding SAED pattern.

Fig.108: (a) Emission spectra and (b) excitation spectra from CaWO₄: Eu³⁺, SrWO₄: Eu³⁺, BaWO₄: Eu³⁺ nanoparticles. (λₑₓc = 270 nm and λₑᵐ = 615 nm)

Fig.109: Emission spectrum (a) and photograph of emission (b) obtained from CaWO₄:Eu nanoparticles after excitation at 253 nm. The corresponding excitation spectrum and decay curve, both monitored at 425 nm emission, is shown in Fig.109 (c) and (d) respectively.

Fig.110: XRD patterns of as prepared, 300, 500, 700 and 900°C heated CaWO₄ nanoparticles.

Fig.111: Emission spectra (a) and excited state decay curves (b) of CaWO₄ nanoparticles as a function of heat treatment (particle size). (λₑₓc = 253 nm and λₑᵐ = 425 nm)

Fig.112: Emission spectra (a) and photograph of emission (b) obtained after excitation at 253 nm from CaWO₄:Tb³⁺ nanoparticles. The corresponding excitation spectrum and decay curve monitored at 545 nm emission is shown in Fig.112 (c and d) respectively.

Fig.113: Emission spectrum (a) and photograph of emission (b) obtained after excitation at 253 nm from CaWO₄:Dy³⁺ nanoparticles. Corresponding excitation spectrum and decay curve monitored at 574 nm emission is shown in Fig.113 (c and d).

Fig.114: Emission spectrum (a) and photograph of emission (b) obtained after excitation at 253 nm from CaWO₄: Sm³⁺ nanoparticles. Corresponding excitation spectrum and decay curve monitored at 602 nm emission is shown in Fig.114 (c and d).
Fig.115: CIE diagram. A, B, C, D and E in the diagram represent the color coordinates of that phosphor.

Fig.116: (a) Emission spectrum and (b) excitation spectrum of Er$^{3+}$ doped CaWO$_4$ nanoparticles.

Fig.117: Schematic representation of an optical amplifier.

Fig.118: Schematic diagram of an electro-luminescent device.