Part VI

Appendix
A

Dimensional Reduction of 10-dimensional Super-Yang-Mills Theory

We will review the dimensional reduction of super Yang-Mills theory following [90, 85].

A.1 10d Super Yang Mills (SYM)

(9 + 1)-dimensional $U(N)$ $\mathcal{N} = 1$ super Yang-Mills action with metric $\eta_{\mu\nu} = \text{diag}(+1, -1, \cdots, -1)$ (μ, ν runs from 0, 1, \cdots, 10) is given by,

$$ S = \frac{1}{g_Y^2} \int d^{10}x \left[-\frac{1}{4} F_{\mu\nu}^a F^{\mu\nu a} + \frac{i}{2} \bar{\Psi}^a \Gamma^\mu D_\mu \Psi^a \right] $$

(A.1)

where \(^1\),

$$ F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu] $$

$$ D_\mu \Psi = \partial_\mu \Psi - i[A_\mu, \Psi] $$

$$ A_\mu = \mathbb{1} A_\mu^0 + T^a A_\mu^a $$

$$ \Psi = \mathbb{1} \Psi^0 + T^a \Psi^a $$

(A.2)

The gauge potential A_μ and Majorana-Weyl spinor Ψ are in the adjoint representation of the gauge group $U(N)$. T^a is the generator of the $SU(N)$ part of the gauge

\(^1\)Summation over repeated index implied unless otherwise stated
Appendix A. Dimensional Reduction of 10-dimensional Super-Yang-Mills Theory

group satisfying \([T^a, T^b] = if^{abc}T^c \), where \(f^{abc} \) is completely anti-symmetric structure constants. \(\mathbb{1} \) is the \(N \times N \) Identity matrix and \((A_\mu^0, \Psi^0) \) represents \(U(1) \) part of \(U(N) \). In the following analysis we will suppress the \(U(N) \) indices. The \(32 \times 32 \) Dirac matrices \(\Gamma_\mu (\mu = 0, \cdots , 9) \) satisfies \(\{ \Gamma_\mu, \Gamma_\nu \} = 2\eta_{\mu\nu} \). The supersymmetry transformations that leaves the action invariant is given by,

\[
\delta A_\mu = i\epsilon \Gamma_\mu \Psi \\
\delta \Psi = \frac{1}{2} F_{\mu\nu} \Gamma^{\mu\nu} \epsilon
\] (A.3)

where \(\epsilon \) is an constant anticommuting Majorana-Weyl spinor and \(\Gamma_{\mu\nu} = \frac{1}{2}[\Gamma_\mu, \Gamma_\nu] \).

We will rewrite the gamma matrices in the following form,

\[
\Gamma_0 = \Gamma^0 = \mathbb{1} \otimes \sigma_2 \\
\Gamma_i = -\Gamma^i = \gamma_i \otimes i\sigma_1 \\
\Gamma_5 = \Gamma^0 \cdots \Gamma^9 = \mathbb{1} \otimes \sigma_3
\] (A.4)

where, \(\gamma_i \) are 9 real symmetric \(16 \times 16 \) matrices satisfying \(\{ \gamma_i, \gamma_j \} = 2\delta_{ij} \). \(\mathbb{1} \) is the \(16 \)-dimensional identity matrix and \(\sigma_{1,2,3} \) are the usual Pauli matrices,

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ; \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} ; \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\] (A.5)

The first 8 \(\gamma \) matrices can be identified with the Dirac matrices of \(\text{spin}(8) \) and the last with \(8 \) dimensional chirality. We will also use 16 component spinors \(\psi \) defined by

\[
\Psi = \psi \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\] (A.6)

The action now becomes,

\[
S = \frac{1}{g_{YM}^2} \int d^{10}x \, Tr \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{i}{2} \psi^T D_0 \psi - \frac{i}{2} \psi^T \gamma_i D_i \psi \right]
\] (A.7)

For reduction to \(0 + 1 \)-dimensions, all the fields are taken independent of all space directions. The volume term in the direction which the reduction is done is
Appendix A. Dimensional Reduction of 10-dimensional Super-Yang-Mills Theory

dropped. The action (eqn.(A.1)) becomes (\(T \) denotes transpose),

\[
S = \frac{1}{2g_{YM}^2} \int dt Tr \left[(D_0 A_i)^2 + \frac{1}{2} [A_i, A_j]^2 + i\psi^T D_0 \psi - \psi \gamma_i [A_i, \psi] \right]
\]

(A.8)

Let us now define \(A_i = \frac{X_i}{2\pi \alpha'} \) and \(\psi = \frac{\theta}{(2\pi \alpha')^2} \). The action becomes,

\[
S = \frac{1}{2g_s l_s} \int dt Tr \left[(D_0 X_i)^2 + \frac{1}{2} \frac{1}{(2\pi \alpha')^2} [X_i, X_j]^2 + i\psi^T D_0 \psi - \frac{1}{(2\pi \alpha')^2} \psi \gamma_i [A_i, \psi] \right]
\]

(A.9)

where, \(g_{YM}^2 = \frac{g_s^2}{16\pi^2 l_s^3} \). The above action is same as the one considered in BFSS matrix model (eqn.(2.1)).

A.2 From 10 to \(p + 1 \)

Consider all fields in 10d SYM action (eqn.(A.1)) independent of \(x_{p+1}, \cdots, x_{10} \). Let us consider the indices \(\mu, \nu, \cdots \) runs from 0, 1, \cdots, \(p \) and \(i, j, \cdots \) from \((p + 1), \cdots, 10 \). Then the dimensional reduction gives,

\[
S = \frac{1}{g_{YM}^2} \int d^{(p+1)}x Tr \left[\frac{1}{2} (D_\mu A_i)(D^\mu A_i) + \frac{1}{4} [A_i, A_j]^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{i}{2} \psi^T D \psi - \frac{1}{2} \psi^T \gamma_i [A_i, \psi] \right]
\]

(A.10)

where \(D = 1D_0 - \gamma_\mu D_\mu \) and 1 is \(16 \times 16 \) identity matrix.
Consider dimensionally reduced maximally supersymmetric $U(N)$ Yang-Mills theory in 10-dimension to $(p+1)$ dimensions (Appendix A),

$$ S_{YM} = \int d^{p+1}L_{YM} = \frac{1}{2g_{YM}^2} \int d^{p+1}x \text{Tr}\{(D_{\mu}A_i)(D^{\mu}A_i) + \frac{1}{2}[A_i, A_j]^2$$

$$- \frac{1}{2}F_{\mu\nu}F^{\mu\nu} + i\theta^T D\theta - \theta^T \gamma_i [A_i, \theta]\} \quad (B.1)$$

where $D = 1D_0 - \sum_{j=1}^{p} \gamma_j D_j$ and 1 is 16×16 identity matrix. $\eta_{\mu,\nu} = (1, -1, -1, \cdots, -1)$ and γ_i ($i = 1, \cdots, 8$) are 16×16 Dirac matrices of spin(8). $\gamma_9 = \gamma_1 \cdots \gamma_8$ is the corresponding chirality matrix. The field content is given by the gauge potential A_μ, 16 component Majorana-Weyl spinor θ and $10 - p$ scalars A_i, all in the adjoint representation of $U(N)$. Also, $D_{\mu}\bullet = \partial_{\mu} \bullet - i[A_\mu, \bullet]$, where \bullet can be replaced by any of (A, θ). We will review the background gauge fixing method in this case following [144].

Let us consider,

$$A_{\mu} = a_\mu + A'_{\mu}$$
$$A_i = a_i + A'_i$$
$$\theta = \Theta + \theta'$$ \quad (B.2)

Where a_μ, a_i, Θ are background fields obeying classical equation of motion. Let us define a new covariant derivative as $\tilde{D}_\mu = \partial_\mu - i[a_\mu, \bullet]$. The primed fields are quantum fluctuations which is integrated out in the path integral to calculate
Appendix B. Background Gauge Fixing

The partition function. Also,

\[F_{\mu\nu} = \bar{F}_{\mu\nu} + (\bar{D}_\mu A'_\nu - \bar{D}_\nu A'_\mu) - i[A'_\mu, A'_\nu] \tag{B.3} \]

where, \(\bar{F}_{\mu\nu} = \partial_\mu a_\nu - \partial_\nu a_\mu - i[a_\mu, a_\nu] \).

Now the allowed gauge transformation is the ones which keep the background unchanged, i.e. \(\delta a_\mu = \delta a_i = \delta \Theta = 0 \). Then the gauge transformation on the fluctuations are given by,

\[
\begin{align*}
\delta A'_\mu &= \bar{D}_\mu \alpha - i[A'_\mu, \alpha] \\
\delta A'_i &= -i[A'_i, \alpha] \\
\delta \theta' &= -i[\theta', \alpha] \tag{B.4}
\end{align*}
\]

The gauge fixing condition we use is,

\[\bar{D}_\mu A'^\mu = 0 \tag{B.5} \]

Therefore the gauge fixing Lagrangian,

\[
\mathcal{L}_{gf} = -\frac{1}{2g_Y^2} Tr(\bar{D}_\mu A'^\mu)^2 \tag{B.6}
\]

where \(\xi \) is an arbitrary parameter (\(\xi = 0 \) gives Landau gauge and \(\xi = 1 \) Feynman gauge) and the ghost Lagrangian,

\[
\mathcal{L}_{gh} = \frac{1}{2g_Y^2} Tr\{(\bar{D}_\mu \tilde{\omega})(\bar{D}_\mu \omega - i[A'^\mu, \omega])\} \tag{B.7}
\]

Where \(\omega \) and \(\tilde{\omega} \) are ghost and anti ghost respectively. Consider the background such that \(a_i = 0 \), \(\Theta = 0 \) and \(\Omega = \bar{\Omega} = 0 \), where \(\Omega \) is the background for ghost. Let us consider the Lagrangian up to quadratic in quantum fluctuation or the 1-loop Lagrangian. We also use the classical equation of motion for the background fields.
Appendix B. Background Gauge Fixing

We get,
\[
\mathcal{L}_{YM}^{(1)} = \frac{1}{2g_Y^2} Tr\{(\bar{D}_\mu A'_\mu)^2 - (\bar{D}_\mu A_\mu')^2 - \frac{1}{2} \bar{F}_{\mu\nu} F^{\mu\nu} - iA'_\mu A_\nu' \bar{F}_{\mu\nu} + (\bar{D}_\mu A^{\mu'})^2 + i\theta'^T \bar{D} \theta'\}
\]
\[
\mathcal{L}_{gf}^{(1)} = -\frac{1}{2g_Y^2} Tr(\bar{D} A^{\mu'})^2
\]
\[
\mathcal{L}_{gh}^{(1)} = \frac{1}{2g_Y^2} Tr\{((\bar{D}_\mu \bar{\omega})'(\bar{D}^\mu \omega'))\}
\]

Then the full gauge fixed 1-loop Lagrangian in Feynman gauge (\(\xi = 1\)) is given by,
\[
\mathcal{L}^{(1)} = \frac{1}{2g_Y^2} Tr\{((\bar{D}_\mu A'_\mu)^2 - (\bar{D}_\mu A_\mu')^2 - \frac{1}{2} \bar{F}_{\mu\nu} F^{\mu\nu} - iA'_\mu A_\nu' \bar{F}_{\mu\nu} + i\theta'^T \bar{D} \theta' + (\bar{D}_\mu \bar{\omega})(\bar{D}^\mu \omega'))\}
\]
\[
= \frac{1}{2g_Y^2} Tr\{-A'_0(\bar{D})^2 A'_0 + A'_0(\bar{D})^2 A_0' - A_0(\bar{D})^2 A_0' + \bar{F}_{09}^2 + 2iA'_0 A_0' \bar{F}_{09} + i\theta'^T \bar{D} \theta' - \bar{\omega}'(\bar{D})^2 \omega')\}
\]

Now consider the case \(p = 1\) i.e. \((1+1)\)-dimensional SYM, then the above action becomes,
\[
\mathcal{L}^{(1)} = \frac{1}{2g_Y^2} Tr\{-A'_0(\bar{D})^2 A'_0 + A'_0(\bar{D})^2 A_0' - A_0(\bar{D})^2 A_0' + \bar{F}_{09}^2 + 2iA'_0 A_0' \bar{F}_{09} + i\theta'^T \bar{D} \theta' - \bar{\omega}'(\bar{D})^2 \omega')\}
\]

where \(\mu = 0, 9\) are the two dimensions of the SYM, \(\bar{D}^2 = \bar{D}_0^2 - \bar{D}_9^2\), and \(i = 1, \cdots, 8\). Let \(\theta' = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}\), where \(\theta_{1,2}\) are eight component spinors. Also consider
\[
1 = \begin{pmatrix} 1_{8\times8} & 0 \\ 0 & 1_{8\times8} \end{pmatrix}\quad \text{and} \quad \gamma_9 = \begin{pmatrix} 1_{8\times8} & 0 \\ 0 & -1_{8\times8} \end{pmatrix}.
\]
Then, \(\theta'^T \bar{D} \theta' = \theta_1^T (D_0 - D_9) \theta_1 + \theta_2^T (D_0 + D_9) \theta_2\) where, \(\theta_{1,2}^* = \theta_{1,2}\).

The Euclidean action is defined by \(S_E = -iS(t = -i\tau, A_0' = iA'_\tau)\) (where, path integral is defined as \(Z = \int \mathcal{D}[\bullet] e^{iS[\bullet]} = \int \mathcal{D}[\bullet] e^{-S_E[\bullet]}\) and \(\tau\) is considered real),
\[
S_E^{(1)} = -\frac{1}{2g_Y^2} \int d\tau Tr\{A'_\tau(\bar{D}_\tau)^2 A'_\tau + A'_\tau(\bar{D}_\tau)^2 A_{\tau}' + A_\tau(\bar{D}_\tau)^2 A_\tau' - \bar{F}_{\tau 9}^2 + 2iA'_{\tau} A_{\tau}' \bar{F}_{\tau 9} - \theta_1^T (\bar{D} - i\bar{D}_9) \theta_1 - \theta_2^T (\bar{D} + i\bar{D}_9) \theta_2 + \bar{\omega}'(\bar{D}_\tau)^2 \omega')\}
\]
where \((\bar{D}_E)^2 = (\bar{D}_r)^2 + (\bar{D}_g)^2\). Consider the case \(a_r = 0, a_g = constant\), then \(\bar{F}_{rg} = 0\) and the action becomes,

\[
S_E^{(1)} = -\frac{1}{2g_{YM}^2} \int d\tau \left\{ A'_i(\bar{D}_E)^2 A'_i + A'_r(\bar{D}_E)^2 A'_r + A'_g(\bar{D}_E)^2 A'_g - \theta'^T_1(\bar{D}_r - i\bar{D}_g)\theta'_1 - \theta'^T_2(\bar{D}_r + i\bar{D}_g)\theta'_2 + \bar{\omega}'(\bar{D}_E)^2 \omega' \right\}
\]

(B.12)

Which gives the 1-loop Euclidean partition function as (Note: as \(\theta\) and \(\theta^T\) are not independent, the path integral of the fermionic fluctuation will also give a factor of \(\frac{1}{2}\) like bosonic, but with a opposite sign),

\[
lnZ^{(1)} = \frac{10}{2} Tr(ln \bar{D}_E^2)_{bosonic} - \frac{8}{2} Tr(ln \bar{D}_L)_{fermionic} - \frac{8}{2} Tr(ln \bar{D}_R)_{fermionic} - Tr(ln \bar{D}_E^2)_{ghost} = 5Tr(ln \bar{D}_E^2)_{bosonic} - 4Tr(ln \bar{D}_E^2)_{fermionic} - Tr(ln \bar{D}_E^2)_{ghost}
\]

(B.13)

where \(\bar{D}_L\) and \(\bar{D}_R\) are operators acting on the left moving and right moving fermion, and \(\bar{D}_E^2 = \bar{D}_L \bar{D}_R\).
In this appendix Mathematica 7 codes used for various calculations for the second part of my thesis are given.

C.1 Fermion

Here ω is the frequency, k is the momentum and $\mu = Qq$. ϵ is a small cut-off near $z = 0$. For zero temperature $Q = 2$.

C.1.1 Zero Temperature

The following is the Mathematica code used in computation of Fermion Green’s function calculation at zero temperature ($Q = 2$), (Greens0T[ω_-, k_-, μ_-, ϵ_-] is the Green’s function at zero temperature, Greens0Tpre[ω_-, k_-, μ_-, ϵ_-] is the same code but with more precision. Here the precision was set to 20 for the input variables, which can be altered by changing the parameter in SetPrecision[] function
and simultaneously changing the parameter WorkingPrecision in NDSolve.)

\[
\text{Greens0T}[\omega_, k_, \mu_, \epsilon_]:=
\text{Module}[\{kt = \omega, kx = k, mu = \mu, emod = \epsilon, f, z, Sol, G, bc0, bc1, \epsilon1 = 10^{-3}\epsilon\},
(*\epsilon1 is a small number in bc0*)
\text{f}[z_] := -1 - z^2 + 2z^2 \text{Log}[z];
bc0 = I\text{Sqrt}\left[\frac{mu^2}{2} - kx^2 + \epsilon1/(mu/Sqrt[2] + kx)\right];
(*exactly at } \omega = 0 \text{ the b.c. is given by bc0 otherwise it is bc1 = I ,I } = \sqrt{-1}^*\)
bc1 = I(1 - KroneckerDelta[kt, 0]) + KroneckerDelta[kt, 0] bc0; Sol =
\text{NDSolve}\{\text{f}[z]G'[z] + G[z]^2(kt + mu \text{Log}[z] - kx \text{Sqrt}[\text{f}[z]]) + (kt + mu \text{Log}[z] + kx \text{Sqrt}[\text{f}[z]]) == 0, G[1 - \epsilon] == bc1\}, G, \{z, \epsilon, 1 - \epsilon\},
\text{MaxSteps } \rightarrow \text{Infinity}; \text{Evaluate}[G[\epsilon]]/._\text{Sol}[[1]]\]
\(\omega \) and \(k \) given by \(\Delta \omega = \Delta k = \epsilon \) \(\sim 10^{-4} \). We have set \(\epsilon = 10^{-4} \) and \(\mu = 1 \).

\[
\text{epsilon} = 10^{-4}; \text{fok}[x_, y_] := \text{Im}[\text{Greens0T}[x, y, 1, 10^{-4}]]; \\
\text{fop}[x_, y_] := (\text{fok}[x + \epsilon, y] - \text{fok}[x, y]) / \epsilon; \text{flk}[x_, y_] := \\
(\text{fok}[x, y + \epsilon] - \text{fok}[x, y]) / \epsilon; \text{fokpr}[x_, y_] := \text{Im}[\text{Greens0Tpr}[x, y, 1, 10^{-4}]]; \\
\text{foppr}[x_, y_] := (\text{fokpr}[x + \epsilon, y] - \text{fokpr}[x, y]) / \epsilon;
\]

\(\text{maxo}[] \) finds the maximum of \(\text{fok}[\omega, k] \) with respect to \(\omega \) at a fixed \(k \). \(\text{maxk}[] \) finds the maximum of \(\text{fok}[\omega, k] \) with respect to \(k \) at a fixed \(\omega \). The output of these functions are as follows: \{\(\omega, k, \text{fokmax}, \text{fokmaxp} \}\), where \(\omega \) or \(k \) gives the position of the maximum depending on which is kept fixed. \(\text{fokmax} = \text{fok}[\omega, k] \) is the value at the maximum and \(\text{fokmaxp} = \text{fop}[\omega, k] \) or \(\text{flk}[\omega, k] \) is the value of the respective derivative at maximum. The loops for searching maximum starts at an initial guess for the position \(\text{xstart} \) or \(\text{ystart} \) and terminates when either \(\text{fokmax} > \text{fmax} \) or \(\text{fokmaxp} < \text{delta} \). \(\text{fmax} \) and \(\text{delta} \) are given as input. We have to also give \(\text{astart} \) as input, which determines the initial step size for maximum search in the loop.

\[
\text{maxo}[k_, \text{astart}_, \text{xstart}_, \text{delta}_, \text{fmax}_] := \\
\text{Module}\{\{x, y, a\}, x = \text{xstart}; y = k; a = \text{astart}; \text{Label}[1]; \\
\text{While}[\text{fop}[x, y] > \text{delta} \&\& \text{fok}[x, y] < \text{fmax}, x += a]; a = .5a; \\
\text{If}[\text{Abs}[\text{fop}[x, y]] < \text{delta} \&\& \text{fok}[x, y] > \text{fmax}, \text{Goto}[\text{end}]]; \\
\text{While}[\text{fop}[x, y] < \text{delta} \&\& \text{fok}[x, y] < \text{fmax}, x += -a]; \\
a = .5a; \text{If}[\text{Abs}[\text{fop}[x, y]] < \text{delta} \&\& \text{fok}[x, y] > \text{fmax}, \text{Goto}[\text{end}], \text{Goto}[1]]; \\
\text{Label}[\text{end}]; \{x, y, \text{fok}[x, y], \text{fop}[x, y]\}
\]
maxk[omega__, astart__, ystart__, delta__, fmax__] :=
Module[{x, y, a}, x = omega;
 y = ystart; a = astart; Label[1];
 If[Abs[a] < 10^-5, Goto[end]]; While[fkp[x, y] > delta
 && fok[x, y] < fmax, y += a]; a = .5a;
 If[Abs[fkp[x, y]] < delta || fok[x, y] > fmax, Goto[end]];
 While[fkp[x, y] < delta && fok[x, y] < fmax, y -= a]; a = .5a;
 If[Abs[fkp[x, y]] < delta || fok[x, y] > fmax,
 Goto[end], Goto[1]]; Label[end];
 {x, y, fok[x, y], fkp[x, y]}]

The module maxkloop[] searches for maximum of fok[ω, k] for a range of ω between ωst and ωe and at a interval int. yst corresponds to the initial guess for position of maximum along k at ω = ωst. ast is the value of astart used in previous program.

maxkloop[ωst__, astart__, ystart__, ωe__, int__] :=
Module[{x, y, a, data, Nsteps, i = 1}, x = ωst; y = yst;
 a = ast; Nsteps = Abs[Round[(ωe - ωst)/int]]; For[i = 1, i < Nsteps, i++,
 d[i] = maxk[x, a, y, 10^-4, 10^6]; x = x + int; y = N[d[i]][[2]]]; Table[d[i], {i, 1, Nsteps - 1}]]

C.1.2 Finite Temperature

The following is the Mathematica code used in computation of Fermion Green’s function calculation at finite temperature (Q ≠ 2). The module PrecisionSet[x, pre] sets precision of x to desired value pre. The module GreensFiniteTpre[ω, k, Q, q, ϵ, pre] calculates the Green’s function at finite temperature. ϵ sets the boundary cut-off near z = 0. fokpr[] is the imaginary part of the Green’s function at q = \frac{1}{2}, Q = 1.99 and pre = 25. Analysis at various values of temperature are done by changing Q at fixed q. fkppr[] evaluates derivative of fokpr[] w.r.t. k at fixed ω using “finite difference approximation” (ε) as in zero temperature case.
Appendix C. Numerical Programming

\begin{verbatim}
PrecisionSet[x_, pre_] := If[Precision[x] == Infinity, N[x, pre], SetPrecision[x, pre]];
GreensFiniteTpre[ω_, k_, Q_, q_, ϵ_, pre_] :=
Module[{kt = PrecisionSet[ω, pre], kx = PrecisionSet[k, pre], c1 =
PrecisionSet[Q, pre], c2 = PrecisionSet[q, pre], ϵmod = ϵ, f, z, Sol, G, sg, T},
 f[z_] := 1 - z^2 + ((z^2 c1^2)/2)Log[z]; Sol =
 NDSolve[{f[z] G'[z] + G[z]^2 (kt + c1 c2 Log[z] - kx Sqrt[f[z]]) +
 (kt + c1 c2 Log[z] + kx Sqrt[f[z]]) == 0,
 G[1 - ϵ] == 1}, G, {z, ϵ, 1 - ϵ},
 MaxSteps -> Infinity, WorkingPrecision -> N[pre - 1]]; sg = Evaluate[G[ϵ]] / Sol[[1]]];
 fokpr[x, y, ϵNd_] := Im[GreensFiniteTpre[x, y, 199/100, 1/2, ϵNd, 25]];
 fkppr[x, y, ϵ, ϵNd_] := (fokpr[x, y + ϵ, ϵNd] - fokpr[x, y, ϵNd]) / ϵ

The module maxkpr[] is similar to what described for zero temperature (maxk[]),
with a slight modification, which alters the value of ϵ (parameter of finite difference
approximation) according to the step size in the loop. maxklooppr[] is similar to
\end{verbatim}
the module used in zero temperature case (maxkloop[]).

\[
\text{maxkpr[omega, astart, ystart, delta, fmax, epsilonNd]} :=
\]
\[
\text{Module[\{x, y, a, \epsilon\}, x = omega; y = ystart; a = astart; Label[1]; If[Abs[a] < delta, Goto[end]];}
\]
\[
\text{If[Abs[a] > 10^{-6}, \epsilon = 10^{-10}, \epsilon = a10^{-4}];}
\]
\[
\text{While[FKPR[x, y, \epsilon, epsilonNd] > delta \&\& FKPR[x, y, \epsilon, epsilonNd] < fmax, y+=a]; a = a/2;}
\]
\[
\text{If[Abs[a] > 10^{-6}, \epsilon = 10^{-10}, \epsilon = a10^{-4}]; If[Abs[FKPR[x, y, \epsilon, epsilonNd]] < delta[FKPR[x, y, \epsilon, epsilonNd] > fmax, Goto[end], Goto[1]];}
\]
\[
\text{If[Abs[a] > 10^{-6}, \epsilon = 10^{-10}, \epsilon = a10^{-4}]; Label[end]; \{omega,}
\]
\[
\text{N[y, Abs[Log[10, delta]] + 1], FKPR[x, y, epsilonNd],}
\]
\[
\text{FKPR[x, y, \epsilon, epsilonNd]}\}
\]

\[
\text{maxkloop[omega, astart, ystart, omega, int]} :=
\]
\[
\text{Module[\{x, y, a, d, data, Nsteps, i = 1\}, x = omega; y = ystart; a = astart;}
\]
\[
\text{Nsteps = Abs[Round[(omega - ystart)/int]];}
\]
\[
\text{For[i = 1, i < Nsteps + 1, i++, d[i] = maxkpr[x, a, y, 10^8 - 7, 10^8 - 7, 10^8 - 10]; x = x + int;}
\]
\[
\text{y = d[i][2]]; Table[d[i], \{i, 1, Nsteps\}]}
\]

\text{Rootfindpr[omega, xi, f0, delta, epsilonNd], finds solution for the equation of the form FKPR[omega, k, \epsilon, epsilonNd] ==}
\[
\text{f0 at a given omega. k = xi is the initial guess for the solution. delta sets the allowed error in the solution. epsilonNd is the boundary cut-off in the Green's function.}
\]

\text{Rootfindpr[omega, xi, f0, delta, epsilonNd] :=
\]
\[
\text{Module[\{x = xi, \Delta\}, While[True, \Delta = N[(f0 - FKPR[omega, x, \epsilon, epsilonNd])]/FKPR[omega, x, 10^8 - 10, \epsilon, epsilonNd];}
\]
\[
\text{(*Precision is MachinePrecision*)}
\]
\[
\text{If[Abs[\Delta] > delta, x = x + \Delta, Break[]]]; x}
\]

\text{FWHMpr[omega, x1i, x2i, f0, delta, epsilonNd], finds the Full-Width-at-Half-Maximum (FWHM)}
in the k-direction (δk) for a given ω. It uses the Rootfindpr[] function to determine two values of k for which the value of the function fokpr[] has half of its maximum value ($f0 = \frac{f_{\text{max}}}{2}$, where f_{max} is the maximum value). The initial guesses for the two values are $x1i$ and $x2i$. For a range of ω, the data set for peak position and peak values are first obtained using maxkloopp[] and the output is stored as maxkdata. FWHMloop[] uses the maxkdata list to calculate the FWHM for the range of ω.

\[
\text{FWHMpr}[\omega_, x1i_, x2i_, f0_, \delta_, \epsilon N d_]:=
\]
Module[{x1, x2, width},
 x1 = Rootfindpr[\omega, x1i, f0, \delta, \epsilon N d];
 x2 = Rootfindpr[\omega, x2i, f0, \delta, \epsilon N d];
 width = Abs[x1 - x2];
 {x1, x2, width}]

\[
\text{FWHMloop}[\omega st_, y1st_, y2st_, \omega e_, \text{int}_]:=
\]
Module[{x = \omega st, y1 = y1st, y2 = y2st, d, data, Nsteps, i = 1},
 Nsteps = Abs[Round[(\omega e - \omega st)/\text{int}]];
 For[i = 1, i < Nsteps + 1, i++,
 d[i] = FWHMpr[x, y1, y2, maxkdata[[i]][[3]]]/2, 10^−7, 10^−10];
 x = x + \text{int};
 y1 = d[i][[1]]; y2 = d[i][[2]];]
 Print[i, d[i]]; Table[maxkdata[[i]][[1]](*\omega *),
 {i, 1, Nsteps}]
]

C.2 Vector

Solution near boundary, $z = \epsilon = ep$ (ϵ is a small number, close to zero) for gauge field perturbation is given by $a(z) \simeq a^+ + a^- Log(z)$. So, $am = a^- = za'(z)\bigg|_{z=\epsilon}$ and $ap = a^+ = [a(z) - a^- Log(z)]\bigg|_{z=\epsilon}$.

148
C.2.1 Finite Temperature

The module Cond[\(\omega, q, ep\)] gives Conductivity at finite temperature, where \(q\) is the square of the black-hole charge.

\[
\text{Cond}[\omega_, q_, ep_]:= \text{Module}[(\{Q = q, \epsilon = ep, eqn, kt = \omega, \nu, f, At, Je, Bc, Bc1, L, E1, H1, am, ap, F, r, S, x\},
\text{Clear}[d*]; f[r_]:= 1 - r^2 + (Q r^2/2) \text{Log}[r]; T = (1 - Q/4)/(2\pi); \nu = I \omega/(4\pi T);
\text{d}[0] = 1; n = 5; eqn = r f'[r] F''[r] + f[r]((2\nu + 1) r f'[r] + f[r]) F'[r] +
(r \nu(\nu - 1) f'[r]^2 + \nu r f''[r] f[r] +
(f[r] + r f'[r]) \nu f'[r] + r (kt^2 - Q f[r])) F[r]; Je[r_]:= \text{Sum}[d[j](1 - r)^j, \{j, 0, n\}];
(* Je[r] is the near horizon (r=1) solution ansatz for the equation \text{eqn}==0*)
L = \text{Table}[\text{FullSimplify}[\text{SeriesCoefficient}[\text{eqn}./F \rightarrow \text{Je}, \{r, 1, i\}], \{i, n\}];
(*L[i][i]==0 is the equations obtained by putting the ansatz (Je) in the expression (eqn),
then expanding in the power series about r = 1, and subsequently
setting the coefficients of each power to zero *)
\text{For}[i = 1, i < n + 1, i++, \text{Si} = d[i]/. \text{Solve}[L[[i]] == 0, d[i]][[1]]; d[i] = \text{Si};]
(* The unknown series coeff of the ansatz, d[i][i] are obtained solving the coupled equations L*)
\text{Bc}[r_]:= \text{Sum}[d[j](1 - r)^j, \{j, 0, n\}; \text{Bc1}[r_]:= D[\text{Bc}[x], x]/. x \rightarrow r;
(*Bc[x], and Bc1[x]=Bc'[x] are solutions of eqn near horizon, and used for boundary condition*)
\text{E1} = \text{NSolve}[(\text{eqn} == 0, F[1 - \epsilon] == \text{Bc}[1 - \epsilon]), F'[1 - \epsilon] == \text{Bc1}[1 - \epsilon]),
F, \{r, \epsilon, 1 - \epsilon\}, \text{MaxSteps} \rightarrow 10^7]; H1[r_]:= f[r]^\nu \text{Evaluate}[F[r]]/. \text{E1}[[1]][[1]]; am = r D[H1[r], r]/. r \rightarrow \epsilon; \text{ap} = H1[\epsilon] - am \text{Log}[\epsilon]; -I/(kt)(ap/am)]
C.2.2 Zero Temperature

The module Cond[\(\omega, ep\)] gives Conductivity at zero temperature,

\[
\text{CondT0}[kt_, ep_] := \text{Module}[[\{\epsilon = ep, eqn, eqn1, \omega = kt, T, f, At, Je, Bc, Bc1, E1, H1, am, ap, g, r, S, x, n, i, L, d\}],
\]

Clear[d*]; \(f[r_] := 1 - r^2 + 2r^2 \log[r]; d[0] = 1; n = 5; eqn1 = g''[r] + \left(1/r + f'[r]/f[r]\right)I(\omega/(1 - r)^2 + I(\omega/(3(1 - r)))g'[r] + (i \omega/2(1 - r)^2)/r - \omega^2/4(1 - r)^4 + \omega^2/f[r]^2 - 8/f[r]) +
\]

\[\frac{i(\omega(\frac{2}{1-r} + f'[r]/f[r]))}{2(1 - r)^2} + I(\omega/6(I(\omega/6 + 1)(1/(1 - r)^2)) +
\]

\[I(\omega/(6(1 - r))(1/r + f'[r]/f[r] + I(\omega/(1 - r)^2))g'[r];
\]

\(eqn = (1 - r)^3 eqn1; Je[r_] := \text{Sum}[d[j](1 - r)^j, \{j, 0, n\}];
\]

\(L = \text{Table}\left[\text{FullSimplify}[\text{SeriesCoefficient}[eqn/.g \to \text{Je}, \{r, 1, i\}], \{i, n\}\right];
\]

\(For[i = 1, i < n + 1, i++, S_i = d[i]/.\text{Solve}\left[L[[i]] == 0, \text{d}[i] \right][[1]]; \text{d}[i] = S_i;\)
\]

\(Bc[r_] := \text{Sum}[d[j](1 - r)^j, \{j, 0, n\}];\)

\(Bc1[r_] := D[Bc[x], x] / . x \to r;\)

\(E1 = \text{NSolve}\left[\{\epsilon = 0, g[1 - \epsilon] == \text{Bc}[1 - \epsilon], g'[1 - \epsilon] == \text{Bc1}[1 - \epsilon], g, \{r, \epsilon, 1 - \epsilon\}, \text{MaxSteps} \to \text{Infinity}\right]; H1[r_] := \text{Exp}[I(\omega/(2(1 - r)))((1 - r)^(-I(\omega/6)))]\text{Evaluate}[g[r]] / . E1[[1]][[1]];\)

\(\text{am} = r \times D[H1[r], r] / . r \to \epsilon; \text{ap} = H1[\epsilon] - \text{am} \log[\epsilon];\)

\(- I/(\omega)(\text{ap}/\text{am})\]
C.3 Scalar

C.3.1 Finite Temperature

The following is the Mathematica code used in Scalar Green’s function calculation at finite temperature,

```
Solution[N_, epsilon_, omega_, momentum_, charge_] :=
Module[{nt = N, w = SetPrecision[omega, 30], ep = SetPrecision[epsilon, 30],
    k = SetPrecision[momentum, 30],
    Q = SetPrecision[charge, 30], P, delta, A, B, V, S, L, HorizonSeries, HorizonSeriesPrime},
Clear[b*, a*];
SetPrecision[a*, 30]; SetPrecision[b*, 30]; T = 1/(4Pi)(2 - Q^2/2);
SetPrecision[T, 30]; m = 1/2; SetPrecision[m, 30];
p = SetPrecision[1 + Sqrt[1 + m^2], 30]; delta[z_] := 1 - z^2 + z^2/2Q^22Log[z];
P[z_] := 1 - z^2 + z^2Q^22Log[z]/2; A[z_] := -z^2P[z]^2;
B[z_] := zP[z](z^2(Q^2/2 - 1) + z^2Q^22Log[z]/2 - 1); V[z_, w_] :=
- P[z]k^2z^2 + z^2(w + QLog[z])^2 + m^22P[z]; S[z_] :=
Sum[a[n](z - 1)^n, {n, 0, nt}];

(*Series expansion near horizon*)
d = -Iw/(4PiT); SetPrecision[d, 30]; L[z_, w_] :=
Series[D[S[z], {z, 2}]delta[z]^2A[z] + D[S[z], z](B[z]delta[z]^2 +
2ddelta[z]D[delta[z], z]A[z]) + S[z](delta[z]^2V[z, w] +
A[z]d(d - 1)D[delta[z], z]A[z] + dB[z]delta[z]D[delta[z], z] +
ddelta[z]D[delta[z], {z, 2}]A[z]), {z, 1, nt}];

(*Finding solutions for series coefficients a[i]*)
b[0] = a[0]; For[i = 3, i < nt + 1, i++, b[i - 2] = a[i - 2]/.Solve[SeriesCoefficient[L[z, w], {z, 1, i}]
== 0, a[i - 2]][[1]]; a[i - 2] = b[i - 2];
```

151
Appendix C. Numerical Programming

(*Writing Series at horizon*)

HorizonSeries[z_, w_] = Sum[b[n](z - 1)^n, {n, 0, nt - 2}];
HorizonSeriesPrime[z_, w_] = D[HorizonSeries[z, w], z];

(*Solving the differential equation numerically*)

a[0] = 1; zb = ep;
Final = NDSolve[{PhiEqn == 0, G[1 - ep] == HorizonSeries[1 - ep, w], G'[1 - ep] == HorizonSeriesPrime[1 - ep, w]}, G, {z, zb, 1 - ep}, WorkingPrecision -> 25, MaxSteps -> Infinity];
Source[z_] = delta[z]^4 G[z]z^{p - 2}; Fluctuation[z_] = D[Source[z], z]z^{(3 - 2p)/(2p - 2)}; gw = Fluctuation[zb]/Source[zb]/Final]

C.3.2 Zero Temperature

The following is the Mathematica code used in Scalar Green’s function calculation at zero temperature,

nt = 7; (* number of terms *)
ep = 10^(-5); SetPrecision[ep, 30]; Q = 2; SetPrecision[Q, 30]; m = 1/2;
SetPrecision[m, 30]; d = I - I w/6; p = SetPrecision[1 + Sqrt[1 + m^2], 30];
P[z_] := 1 - z^2 + z^2Q^2Log[z]/2; A[z_] := z^2P[z]^2; B[z_] := zP[z](z^2(Q^2/2 - 1) + z^2Q^2Log[z]/2 - 1); V[z_, w_] := -P[z]k^2z^2 + z^2(w + QLog[z])^2 - m^22P[z];
S[z_] := Sum[a[n](z - 1)^n, {n, 0, nt}];
Appendix C. Numerical Programming

\((\text{Series expansion near horizon})\)
\[
L[z_-, w_-] := \text{Series}[4S[z]V[z, w](-1 + z)^4 +
2B[z](-1 + z)^2((Iw + 2d(-1 + z))S[z] + 2S'[z](-1 + z)^2) +
A[z]((-w(w + 4I(-1 + z)) + 4d(1 + Iw - z)(-1 + z) +
4d^2(-1 + z)^2)S[z] +
4(Iw + 2d(-1 + z))(-1 + z)^2S'[z] + 4(-1 + z)^2S''[z]), \{z, 1, nt\}]; b[0] = a[0];
\]
\[
\text{For}[i = 6, i < nt + 1, i++, b[i - 5] = a[i - 5]/. \text{Solve}[\text{SeriesCoefficient}[L[z, w], \{z, 1, i\}] == 0, a[i - 5]][[1]]; a[i - 5] = b[i - 5]];}

\((\text{Writing Series at horizon})\)
\[
\text{HorizonSeries}[z_-, w_-] = \text{Sum}[b[n](z - 1)^n, \{n, 0, nt - 5\}];
\text{HorizonSeriesPrime}[z_-, w_-] = D[\text{HorizonSeries}[z, w], z];
\]

\((\text{Solving the differential equation numerically})*\)
\[
w = 0.1; \text{a[0]} = 1; \text{zb = ep; PhiEqn := 4G[z]V[z, w](-1 + z)^4 +}
2B[z](-1 + z)^2((Iw + 2d(-1 + z))G[z] + 2G'[z](-1 + z)^2) +
A[z]((-w(w + 4I(-1 + z)) + 4d(1 + Iw - z)(-1 + z) +
4d^2(-1 + z)^2)G[z] +
4(Iw + 2d(-1 + z))(-1 + z)^2 G'[z] + 4(-1 + z)^2G''[z]);
\]
\[
\text{Final[\text{omega}, \text{momentum}]} := \{w = \text{SetPrecision}[\text{omega}, 30];
\text{k = SetPrecision[momentum, 30]; \text{NDSolve}[\{\text{PhiEqn} == 0, G[1 - ep] ==}
\text{HorizonSeries}[1 - ep, w], G'[1 - ep] == \text{HorizonSeriesPrime}[1 - ep, w] \}, G, \{z, zb, 1 - ep\},
\text{WorkingPrecision -> 25, MaxSteps -> Infinity} \});
\text{Source[z_] = \text{Exp}[I w/(2(1 - z))](z - 1)^\text{dG}[z]z^p(p - 2);}
\text{Fluctuation[z_] = D[Source[z], z]z^3 - 2p)/(2p - 2);}
gw = \text{Fluctuation[zb]/Source[zb]};
\]

153