Contents

Abstract vi
List of Abbreviations viii
List of Symbols x
List of Figures xv
List of Tables xxv
List of Publications xxvii

1. Resonant Converters and Constant-Current Power Supplies 1
 1.1 Switch-Mode Power Conversion and Soft-Switching 1
 1.2 Resonant Converters: History and Present Status 3
 1.2.1 RC Topologies 4
 1.2.1.1 Two-element RC Topologies 5
 1.2.1.2 Three-element RC Topologies 7
 1.2.1.3 Higher-Order RC Topologies 9
 1.2.2 Modes of Operation 11
 1.2.3 Methods of Control 13
 1.2.3.1 Variable Frequency Control 13
 1.2.3.2 Phase Control 13
 1.2.3.3 Clamped Mode Control 13
 1.2.3.4 Asymmetrical Pulse Width Modulation Control 14
 1.2.3.5 Asymmetrical Voltage Cancellation Control 14
 1.2.3.6 Integral Cycle Control 14
2. Resonant Immittance Converter Topologies

2.1 Immittance Converter

2.2 Resonant Immittance Converter

2.3 Identification of RINs

2.3.1 One-, Two- and Three-Branch Topological Structures

2.3.2 Four-Branch Topological Structures

2.3.2.1 Topology N7

2.3.2.2 Topology N8

2.3.2.3 Topology N9

2.3.2.4 Topology N10

2.4 Design Conditions

2.5 General Features

2.6 Conclusion

3. Analysis, Design and Topological Extensions of Type-II RICs

3.1 Topology T1: LCL-T RC

3.1.1 Analysis

3.1.2 Design

3.1.3 Experimental Results

3.1.4 Merits and Limitations

3.2 Topology LA2: The LC-LC RC

3.2.1 Analysis

3.2.2 Design

3.3 Topology T3

3.3.1 Analysis

3.3.2 Design

3.3.3 Experimental Results

3.4 A Higher Order T-Type RIC Topology

3.4.1 Analysis

3.4.2 Design

3.4.3 Experimental Results

3.5 Topological Extensions
3.5.1 Type-II RIC With Inherent CCCV Characteristics 93
3.5.1.1 Experimental Results 97
3.5.2 Multi-phase Type-II RIC 100
3.5.2.1 Source- and Load-Side Harmonics 100
3.5.2.2 Phase-staggered Operation 102
3.5.2.3 Simulation Results 105
3.6 Conclusion 105

4. Asymmetrical Pulse Width Modulation Control 108
4.1 APWM Controlled LCL-T RC 109
4.2 State-Space Model and Modes of Operation 111
4.2.1 Mode-I 113
4.2.2 Mode-II 114
4.2.3 Mode-III 114
4.2.4 Mode-IV 115
4.2.5 Discussion 116
4.3 Mode Boundaries 117
4.4 Converter Design 120
4.5 Experimental Results 122
4.6 Conclusion 125

5. Equivalent Circuit Modeling and Analysis 126
5.1 Approximate Equivalent Circuit Model for Type-II RINs 127
5.2 Construction of Equivalent Circuit Model 129
5.3 Simulation and Experimental Results 133
5.4 Conclusion 139

6. Application Examples 140
6.1 HV DC Power Supply 140
6.1.1 Suitable Type-II RIC Topologies 141
6.1.2 Effect of C_w on LCL-T RC 142
6.1.3 Design of Topology LA$_2$ as a HV Power Supply 146
6.1.4 Experimental Results 148
6.2 Capacitor Charging Power Supply 151
 6.2.1 Design of LCL-T RC with Clamp Diodes as a CCPS 153
 6.2.2 Experimental Results 154
6.3 Ultracapacitor Charger 156
 6.3.1 Accounting Diode Drops in Design 157
 6.3.2 Effect of L_{jk} 159
 6.3.3 Experimental Results 161
6.4 Pulsed Current Sources 163
 6.4.1 Configurations of Type-II RICs as Pulsed
 Current Sources 165
6.5 Conclusion 169

7. Conclusions 170
 7.1 Accomplishments 171
 7.2 Suggestions for Future Research 175

Appendix I 176

References 179