List of Figures

2.1 The action of a 50:50 beamsplitter on the mode operators. 64
2.2 The case $n = 6$. Line 3 denotes the upper bound $E_{\text{up}}(\hat{\rho}_{\text{out}})$, line 2 the lower bound $E_{\text{l}2}(\hat{\rho}_{\text{out}})$, and the curve 1 the lower bound $E_{\text{l}1}(\hat{\rho}_{\text{out}})$ 78
2.3 The case $n = 7$. Line 3 denotes the upper bound $E_{\text{up}}(\hat{\rho}_{\text{out}})$, line 2 the lower bound $E_{\text{l}2}(\hat{\rho}_{\text{out}})$, and the curve 1 the lower bound $E_{\text{l}1}(\hat{\rho}_{\text{out}})$ 79
2.4 The curves 1 and 2 correspond to the lower and upper bounds for the case $n = 2$, the curves 3 and 4 correspond to the lower and upper bounds for the case $n = 3$, and the curves 5 and 6 correspond to the lower and upper bounds for the case $n = 4$ 82

7.1 Variation of $\mathcal{N}(\rho)$ with number of photons m for the Fock state $\rho = |m\rangle\langle m|$. 177
7.2 Variation of $\mathcal{N}(\rho)$ with energy $|\beta^2|$ for the phase-averaged coherent state. 178
7.3 Variation of $\delta_1(\hat{\rho})$ as a function of the Boltzmann parameter x for the photon-added thermal state. 179
7.4 Variation of $\delta_2(\hat{\rho})$ as a function of the Boltzmann parameter x for the photon-added thermal state. 180