List of figures

Figure 1.1: Three-step model of high order harmonic generation 4
Figure 1.2: Electron recombination energy vs. laser phase 5
Figure 1.3: Addition of the harmonic field with propagation results in generation of only odd harmonics 6
Figure 1.4: Periodic modulation of solid surface by incident laser pulse resulting in emission of high order harmonics in the direction of reflected laser light 10
Figure 1.5: Fig.-of-eight orbit of an electron for: (a) p-polarized light, (b) s-polarized light. 11
Figure 1.6: Schematic of high order harmonic generation experiment from gas jets 12
Figure 1.7: High order harmonic spectrum for different values of laser pulse duration 13
Figure 1.8: HHG from modulated hollow core fibre 14
Figure 1.9: Harmonic generation using variable length gas cells 15
Figure 1.10: Harmonic intensity with gas pressure 16
Figure 1.11: Harmonic intensity variation with medium length 17
Figure 1.12: Schematic of high order harmonic generation from laser ablated plasma plumes 18
Figure 1.13: High-order harmonic spectra from (1) indium and (2) silver plumes 19
Figure 1.14: Reduction in resonance enhancement with the change in driving laser wavelength 19
Figure 1.15: Schematic of HHG from solid surfaces by using double plasma mirrors to reduce pre-pulse 22
Figure 2.1: Block diagram of the Ti:sapphire laser system 28
Figure 2.2: A typical wavelength spectrum of the Ti:sapphire laser pulse 31
Figure 2.3: A schematic of second order autocorrelator 32
Figure 2.4: Generation of autocorrelator trace in SHG crystal 32
Figure 2.5: (a) Autocorrelator signal, and (b) its trace using “Promise” software 33
Figure 2.6: Schematic of experimental setup for beam divergence measurement 34
Figure 2.7: a) Magnified image of laser focal spot on CCD, b) intensity profile of the laser spot closely matching the Gaussian fit. 35
Figure 2.8: Schematic of the experimental setup 35
Figure 2.9: A Schematic of XUV spectrograph 38
Figure 2.10: Typical spectrum from the XUV spectrograph 39
Figure 2.11: A schematic of the improved XUV spectrograph 39
Figure 2.12: Typical spectrum from the improved XUV spectrograph

Figure 3.1 Harmonic spectrum from silver plasma plume in the range of 13 to 38 nm. (a) A typical image of the harmonics and (b) its intensity scan across a horizontal line

Figure 3.2 Intense 13th harmonic order generated in indium plasma plume at (λ=61 nm)

Figure 3.3 Optical spectrum from indium plasma plume: 1) shows the strong excitation conditions, 2) shows weak excitation conditions

Figure 3.4 Temporal characteristics of optical emission from low and high excited plasma plumes

Figure 3.5 Variation of the intensity of the 35th harmonic with the pre-pulse laser intensity. The dashed curve is to guide the eye.

Figure 3.6 Variation of the intensity of the 13th harmonic from indium plasma plume with respect to the time delay between the pre-pulse and the driving laser pulse. The dashed curve is to guide the eye.

Figure 3.7 Variation of the 21st harmonic intensity as a function of the distance between the target surface and the axis of the main laser beam

Figure 3.8 Dependence of the 21st harmonic intensity on the focal position of the driving laser radiation.

Figure 4.1 High harmonic spectrum as recorded on the CCD camera for (a) indium plasma, (b) InSb plasma (c) Cr plasma

Figure 4.2 Comparison of resonance enhancement of particular harmonic order, from GaAs, As and GaP plume, shows the role of target element on resonance enhancement.

Figure 4.3 Variation of the 47th harmonic wavelength for different chirp conditions of the driving radiation. Each curve is shifted vertically to avoid overlap for visual clarity

Figure 4.4 Variation of the harmonic spectrum from indium plume with the pulse chirp and pulse width: (a) chirp-free 45-fs pulses, (b) negatively chirped 95-fs pulses, and (c) negatively chirped 250-fs pulses. Each curve is shifted vertically to avoid overlap for visual clarity.

Figure 4.5 Harmonic distribution of the Cr plume at different chirps of the driving pulse: (a) chirp-free 45 fs pulse, (b) and (c) negatively chirped 85 fs and 160 fs pulses.

Figure 4.6 Harmonic spectra from the GaAs plume as a function of pulse chirp and width. Each curve is shifted vertically to avoid overlap for visual clarity.

Figure 5.1 Ray diagram showing the focusing geometry and effect of defocusing on the beam propagation under different focusing conditions.

Figure 5.2 Variation of the 23rd harmonic intensity with the change in focus position of the femtosecond laser w.r. to the centre of the plasma plume. The solid line is to guide the eye.
Figure 5.3 Variation of intensity of 41st harmonic with the change in focus position of femtosecond laser w. r. to the centre of the plasma plume. The solid line is to guide the eye.

Figure 5.4: The laser propagation geometry inside the plasma plume

Figure 5.5 Variation of the harmonic intensity with plume length

Figure 5.6 Variation of harmonic intensity with harmonic order at two different medium lengths

Figure 6.1 HHG spectra recorded for different number of laser shots fired on the same spot

Figure 6.2 Observation of second plateau in HHG from Mn plume (a) HHG before optimization (b) HHG after optimization

Figure 7.1 TEM images of (a) commercially purchased Ag nanoparticles, (b) commercially purchased Au nanoparticles, (c) chemically prepared Ag triangle platelets. The size of black lines on the images is 50 nm

Figure 7.2 TEM images of (a) deposited Ag nanoparticles obtained at low intensity of pre-pulse (~10^9 W/cm^2) and (b) deposited disintegrated Ag nanoparticles obtained at high intensity of pre-pulse (≥1×10^10 W/cm^2). The size of black lines on the images is 50 nm

Figure 7.3 (a) TEM image of C_60 powder agglomerate before the deposition; (b) TEM image of deposited debris of C_60 after strong excitation (I = 1×10^10 W/cm^2) of fullerene-containing target. The scale lengths on the images correspond to 2 nm. In the insets, the Fourier transform patterns of the C_60 crystalline nano-powder and debris are shown.

Figure 7.4 Typical HHG spectra from silver nanoparticles (solid line) and bulk silver target (dashed line). The intensity of HHG spectrum from bulk Ag target is 10x multiplied for better visibility.

Figure 7.5 Comparison of HHG yield from silver nanoparticles prepared in (a) PVA and dried naturally, (b) PVA and dried in oven, and (c) prepared by mixing nanoparticles with glue. The harmonic intensity from the nanoparticle target prepared in PVA and dried in oven is maximum. The spectra (b, c) are shifted up for visual clarity.

Figure 7.6 Comparison of relative intensities of harmonics for (a) bulk Ag, (b) Ag nanoparticles, (c) SrTiO_3 nanoparticles, (d) Au nanoparticles, and (e) bulk In. The intensity of bulk Ag harmonics is multiplied by 10 for better visibility. The intensity of harmonics from nanoparticles is of the order of the enhanced 13th harmonic from indium plasma. The spectra are sequentially shifted up for visual clarity.

Figure 7.7 Comparison of harmonic intensity in the case of (a) fullerene plasma and (b) In plasma.

Figure 7.8 Variation of the harmonic intensity with number of laser shots in the case of nanoparticle-containing target. The target is irradiated at same place.

Figure 7.9 AFM images of the silver deposition in the case of: a) weak (I~10^10 W/cm^2) excitation, and b) strong (I~10^13 W/cm²)
excitation of targets. The horizontal and vertical axes show the scan sizes of the two images, whereas the vertical bar at right shows the colour coding for different sized nanoparticles.

Figure 7.10 Comparison of the HHG spectra from a) silver mono-particles, b) in-situ produced silver nanoparticles, and c) from coated silver nanoparticles. The intensity of HHG emission is normalized for comparison. The curves b and c are shifted vertically for visual clarity.

Figure 8.1 Laser spectrum when no glass plate is inserted (blue) and when glass plate is inserted in the path of focussing laser pulse (red).

Figure 8.2 Bandwidth comparison of HHG (a) from normal laser pulse and (b) from laser pulse after passage through glass plate. Inset shows the expanded view of 17th harmonic for the two cases.

Figure 8.3 Broadening of harmonic spectrum with increase of laser intensity. The harmonic spectrum for higher laser intensity has been shifted up for the ease of visual inspection.

Figure 8.4 Variation in harmonic bandwidth with harmonic order

Figure 9.1 Electron recombination energy normalized to ponderomotive energy vs. tunelling phase of electron for (a) only fundamental laser pulse (b) two-colour laser pulse with 2% SH field and (c) two-colour laser pulse with 15% SH field.

Figure 9.2 Schematic of the experimental setup

Figure 9.3 HHG spectra from Ag plasma at: (a) single-colour (800 nm) pump, (b) orthogonally polarized two-colour pump, and (c) parallel polarized two-colour pump. Side lobes of the odd harmonics in the (a) correspond to the second-order diffraction lines of strong high-order harmonics.

Figure 9.4 CCD images of the harmonic spectra obtained from the silver plasma using: (a) two-colour laser pulses from circularly polarized fundamental radiation and (b) two-colour pump from linearly polarized fundamental radiation

Figure 9.5 Harmonic spectra obtained from carbon plasma plume using the two-colour pump scheme in the case of negatively chirped (thick line) and positively chirped (thin line) pulses of fundamental radiation.

Figure 9.6 Harmonic spectrum from indium plasma using the two-colour pump

Figure 9.7 CCD images of the harmonic spectra generated in C_{60} plasma using: (a) single-colour fundamental pump (800 nm), (b) two-colour pump (800 nm + 400 nm), and (c) single-colour SH pump (400 nm). The data were collected under similar experimental conditions.

Figure 9.8 HHG spectra from excitation with a) strong two-colour pump (b) single-colour fundamental pump (800 nm), and (c) two-colour pump with reduced efficiency through tilting the SH crystal. One may see that odd harmonics reappear with the reduction in SH intensity. The spectra are normalized and shifted vertically to facilitate visual comparison