LIST OF TABLES

Table 1.1 Comparison of Nondestructive Assay and Conventional techniques for the assay of nuclear materials.

Table 2.1 Specifications of a surface in MCNP.

Table 3.1 Gamma ray energies of 169Yb and 235U.

Table 3.2 Results of k_{att} calculations by the present method and comparison with values available in the literature for samples of different geometries.

Table 3.3 Results of k_{att} calculations by the present method and comparison with values available in the literature and MCNP values for cylindrical sample.

Table 4.1 235U gamma ray peaks used in the analysis.

Table 4.2 The expected and obtained uranium concentration in aqueous samples.

Table 4.3 Gamma ray energies and intensities of the nuclides used in the analysis.

Table 4.4 The expected and the obtained plutonium amount in the samples.

Table 4.5 Isotopic composition of one of the representative empty stainless box.

Table 4.6 The plutonium amount obtained in different stainless steel samples.

Table 4.7 The results of uranium assay in the sludge sample.

Table 4.8 The results of enriched uranium assay by apparent mass method and by simple gamma counting.

Table 5.1 Monoenergetic sources used as calibration sources.

Table 5.2 Multi-energetic sources used as calibration sources.

Table 5.3 Detector parameters provided by manufacturer and optimized by MCNP simulation.
Table 5.4 The comparison of experimental and MCNP efficiencies at three sample-to-detector distances, $d = 1.7$ cm, 12.6 cm and 21.7 cm. The detector geometry used has been provided by the manufacturer.

Table 5.5 The ratio of MCNP and experimental efficiencies at two sample-to-detector distances, $d = 1.7$ cm and 21.7 cm. The MCNP efficiencies are computed by changing some detector crystal parameters to see its effect on the detector efficiency.

Table 5.6 The comparison of experimental and MCNP efficiencies at two sample-to-detector distances, $d = 1.7$ cm and 21.7 cm. The MCNP efficiencies are computed by changing the Al end cap to detector crystal distance (d_{alc}) to see its effect on the detector efficiency.

Table 5.7 The comparison of experimental and MCNP efficiencies at two sample-to-detector distances, $d = 1.7$ cm and 21.7 cm. The MCNP efficiencies are computed by taking the optimized the Al end cap to detector crystal distance as the basis and further optimization by changing the detector radius and dead layer thickness.

Table 5.8 Ratios of MCNP to experimental efficiencies for 5 ml sources of 109Cd, 57Co, 203Hg, 137Cs and 65Zn and for 100 ml 152Eu source.

Table 6.1 Coincidence correction factors for different nuclides at $d = 1.7$ cm by the analytical and experimental method for point source geometry.

Table 6.2 Coincidence correction factors for nuclides present in fission product sample at $d = 1.7$ cm for point source geometry.

Table 6.4 Coincidence correction factors for different nuclides at $d = 2.0$ cm by the present and analytical method for 5 ml source geometry.
List of Tables

Table 6.5 Coincidence correction factors for nuclides present in fission product sample at $d = 2.0 \text{ cm}$ for 5 ml geometry.