CONTENTS

SYNOPSIS

LIST OF FIGURES [appended below]

CHAPTER 1: INTRODUCTION 1-14

CHAPTER 2: REVIEW OF LITERATURE 15-39

CHAPTER 3: MATERIALS & METHODS 40-76

CHAPTER 4: RESULTS 77-130

- Improvement on the basic LV: 77-103
- Enhanced biodistribution: 104-117
- LV Tat assay: 118-125
- EPO expression on LV format: 126-130

CHAPTER 5: DISCUSSION 131-150

CHAPTER 6: SUMMARY & CONCLUSION 151-154

REFERENCES 155-168

APPENDIX: LIST OF PRIMERS & PCR CONDITIONS 169-172

List of figures

- Fig-1. Viruses used for making gene delivery vehicles with their respective genome sizes and vectors derived showing the transgene position and loading capacity-4
- Fig-2. Gene therapy vectors used in clinical trials-9
- Fig-3. Schematic representation of sub-genomic organization of HIV-17
- Fig-4. A simplified representation of HIV-1 genome organization-17
Fig-5. Strand transfer mechanism-18
Fig-6. HIV life cycle-19
Fig-7. Genome organization of wild type HIV and a HIV derived lentiviral vector-21
Fig-8. Different generations of lentiviral packaging plasmids-23
Fig-9. LV designs for shRNA delivery-32
Fig-10. Schematic representation of a signal peptide-33
Fig-11. Possible applications of CPP-mediated transduction-36
Fig-12. Synergistic activation of HIV-1 LTR mediated viral transcription by Tat complex-39
Fig-13. Single step generation of shRNA cassette using extension PCR-59
Fig-14. Schematic representation of production of lentiviral vector and target cell transduction-66
Fig-15. Genetic map of the HIV-2 derived basic vector containing MCS with available RE sites for cloning of transgene cassettes-77
Fig-16. Construction of LV-neo-78
Fig-17. Functional evaluation of LV-neo: PCR detection of neo in G418 selected cells-79
Fig-18. Construction of LV.LacZMCS-neo-81
Fig-19. Functional evaluation of LV.LacZMCS-neo: GFP down regulation by shRNA-GFP-82
Fig-20. Construction of LV.EF1α-MCS-neo-83
Fig-21. Functional evaluation of LV.EF1α-MCS-neo: LV-RFP transduction on SupT1 cells-84
Fig-22. Construction of LV-kana-neo-85, 86
Fig-23. In vitro and in vivo efficacy of the reduced size LV-kana/ne-GFP- 87, 88
Fig-24. Construction of dual-MCS LV-89
Fig-25A. Functional evaluation of dual-MCS LV: Fluorescent reporter expression & strand transfer-91
Fig-25B. Functional evaluation of dual-MCS LV: Reporter down-regulation using dual-MCS LV-92
Fig-26. Construction of LV.LoxP-94
Fig-27A. Cre responsive expression construct-95
Fig-27B. Functional evaluation of LV.LoxP: LoxP reporter cell line and conditional site specific excision of transduced expression unit-96
Fig-28. Construction and functional evaluation of LV-puro-97
Fig-29. Construction of LV.HS.tag-98
Fig-30. Functional evaluation of LV.HS.tag-100
Fig-31. Chandipura envelope glycoprotein expression plasmid, production of pseudotypes and transduction-101,102
Fig-32. LV titration-103
Fig-33. In silico analysis of EPO derived SP-104
Fig-34. Functional evaluation of EPO derived SP-105
Fig-35. Functional evaluation of LV-SP-107
Fig-36. In silico analysis of the chimeric peptide (SP-CPP) generated for GFP N-terminal fusion-108
Fig-37. Secretory CPP tagged GFP and its detection-109
Fig-38. GFP localization in the target cells by co-culture-111
Fig-39. GFP expressing lentiviral transfer vectors and stable cell lines-112
Fig-40. GFP localization in the target cells by transwell experiment-113
Fig-41. Dual reporter LV for in vivo biodistribution studies-115
Fig-42. In vivo enhanced bio-distribution using dual reporter vectors-117
Fig-43. Genomic organization of the transactivator-reporter gene cassettes and Tat induced reporter expressions-119
Fig-44. Reporter bioassay profiles of the indicator cell lines-121
Fig-45. Construction of pLV.LG-tat-123
Fig-46. Lentivirally derived indicator cell line and reporter bioassay profile-124
Fig-47. Graphical abstract of the assay system-125
Fig-48. EPO cDNA synthesis and mammalian expression-127,128
Fig-49. EPO expression from LV platform-129
Fig-50. Limiting dilution assay and serum free EPO productivity-130