CONTENTS

Preface i - iii
Synopsis i - xii
Contents xiii - xvi
List of tables xvii - xviii
List of figures xix - xxi
List of Photographs xxii

I. General Introduction 1 - 40

1.1 History 1

1.2 Sodium silicate 3

1.3 Colloidal silica and silicates 6

1.4 Lime-silica-water system 7

1.5 Hydrated calcium silicate 10

1.6 Interaction of lime-silica-water 16

1.7 Reaction of calcium hydroxide and colloidal silica 18

1.8 Precipitated silica 27

1.9 Surface chemistry of silica and silicates 29

1.10 General aspects on pore volume and pore size distribution 32

1.11 Surface structure of silica and silicates 34
1.12 Objective and abstract of thesis 39

II. Apparatus and Procedure 41 - 59

2.1 Chemical analysis 41
2.2 Dehydration estimations 43
2.3 Hydration estimations 44
2.4 Differential thermal analysis (DTA) 45
2.5 pH determinations 47
2.6 Surface area measurement by nitrogen gas adsorption method 49
2.7 Determination of pore volume 55
2.8 Determination of pore diameter and pore size distribution 56
2.9 Determination of water adsorption desorption isotherms 56
2.10 Oil absorption test 58
2.11 Specific gravity determination 59
2.12 Bulk density determination 59

III. Preparation of Hydrated Calcium Silicates and Precipitated silica 60 - 81

3.1 Raw materials 60
3.2 Hydrated calcium silicate by the reaction of marine gypsum and sodium silicate 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Hydrated calcium silicate by the reaction of active silica and calcium hydroxide</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Precipitated silica by polymerisation of active silica</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Preparation of samples</td>
<td>78</td>
</tr>
<tr>
<td>IV</td>
<td>Results and Discussion</td>
<td>82 - 162</td>
</tr>
<tr>
<td>4</td>
<td>Hydrated calcium silicate (HCS) from marine gypsum and sodium silicate reaction</td>
<td>82 - 110</td>
</tr>
<tr>
<td>4.1</td>
<td>Study of pH</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Nature of HCS</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Dehydration-hydration</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>DTA data</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>Surface chemistry of HCS</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Hydrated calcium silicate (HCS) from calcium hydroxide and active silica reaction</td>
<td>111 - 130</td>
</tr>
<tr>
<td>5.1</td>
<td>Study of pH</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Nature of HCS</td>
<td>114</td>
</tr>
<tr>
<td>5.3</td>
<td>Dehydration-hydration</td>
<td>115</td>
</tr>
<tr>
<td>5.4</td>
<td>DTA data</td>
<td>117</td>
</tr>
<tr>
<td>5.5</td>
<td>Surface chemistry of HCS</td>
<td>119</td>
</tr>
</tbody>
</table>
6. Precipitated silica by polymerisation of active silica 131 - 151

 6.1 Study of pH 131
 6.2 Nature of precipitated silica 132
 6.3 Hydration - dehydration 133
 6.4 DTA data 135
 6.5 Surface chemistry of precipitated silica 138

7. Conclusion from the comparative study of mechanism of reactions and surface chemistry 162 - 162

 7.1 Mechanism of reactions 152
 7.2 Surface chemistry 156

V. Applications of Reactions Leading to Processes for manufacture of hydrated calcium trisilicates and precipitated silica 163 - 171

 8.1 General 163
 8.2 Process details 163
 8.3 Material balance 165
 8.4 Cost estimation and conclusion 165

Acknowledgement .. I 172

VI. Bibliography .. I 173 - 182

Appendix .. I