COMMON FIXED POINT THEOREM FOR THREE MAPPINGS IN COMPLETE METRIC SPACE

by
GEETA CHOURASIA

(Received: July 22, 1987)

Abstract: In this paper we shall establish a unique common fixed point theorem which is the generalization of the results due to Banach [1], Kannan [5], Fisher [4] Chatterjee [2] and others.

The object of this paper is to prove the following theorem:

THEOREM:—Let E, F and T be three continuous mappings of the complete metric space \((X, d) \) into itself satisfying the following conditions;

\[
ET = TE, FT = TF, F(X) CT(X) \text{ and } E(X) CT(X) \tag{1.1}
\]

\[
d(Ex, Fy) \leq \alpha \frac{d(Tx, Ex) + d(Ty, Fy)}{d(Ex, Ty)} \tag{1.2}
\]

\[
\theta [d(Tx, Ex) + d(Ty, Fy)]
\]

\[
\gamma [d(Tx, Fy) + d(Ty, Ex)] + \delta d(Tx, Ty)
\]

for all \(x, y \) in \(X \) with \(Tx \neq Ty \) where \(\alpha, \beta, \gamma, \delta \geq 0 \), \(\alpha + 2\beta + 2\gamma + \delta < 1 \), \((2\beta + \delta) < 1 \). Then \(E, F \) and \(T \) have a unique common fixed point in \(X \).

Proof: Let \(x_0 \in X \) be an arbitrary element and let \((Tx_n) \) be defined as

\[
Tx_{n+1} = Ex_n, Tx_{n+2} = Fx_{n+1}, \text{ for } n = 0, 1, 2, \ldots \tag{1.3}
\]

We can do this since \(F(X) CT(X) \) and \(E(X) CT(X) \). Then by (1.2) we have

\[
d(Tx_{n+1}, Tx_{n+2}) = d(Ex_n, Fx_{n+1})
\]

\[
\leq \alpha \frac{d(Tx_{n+1}, Ex_n) + d(Tx_{n+1}, Fx_{n+1})}{d(Ex_n, Ty)}
\]

\[
\theta [d(Tx_n, Ex_n) + d(Tx_{n+1}, Fx_{n+1})]
\]

\[
\gamma [d(Tx_n, Fx_{n+1}) + d(Tx_{n+1}, Ex_n)]
\]

\[
\delta d(Tx_n, Ty)
\]

It follows that

\[
d(Tx_{n+1}, Tx_{n+2}) \leq \frac{\delta + \gamma + \delta}{\frac{1}{\alpha} - \frac{\delta}{\gamma} - \theta} d(Tx_n, Tx_{n+1})
\]
Put $\beta \neq \gamma + \delta \neq \gamma$, \(\lambda \). Thus $h < 1$ and we have

\[d(Tx_{n+1}, Tx_{n+1}) < \delta d(Tx_n, Tx_{n+1}) \]

Similarly we can see

\[d(Tx_{n+1}, Tx_{n+1}) < h^{n+1} d(Tx_n, Tx_1) \]

By routine calculation the following inequalities hold for $k > n$

\[d(Tx_n, Tx_{n+k}) \leq \sum_{i=0}^{k-1} d(Tx_i, Tx_{i+1}) \]

\[\leq \sum_{i=0}^{k-1} h^{i+1} d(Tx_i, Tx_{i+1}) \]

\[\leq \frac{h^k}{1 - h} d(Tx_n, Tx_1) \]

\[\to 0 \text{ as } n \to \infty \]

Hence \(\{Tx_n\} \) is a Cauchy sequence. By the completeness of \(X \), \(\{Tx_n\} \) converges to a point \(u \in X \). It follows from (1.1) that \(\{Ex_n\} \) and \(\{Fx_{n+1}\} \) also converges to \(u \), since \(E \), \(F \) and \(T \) are continuous, we have,

\[E(Tx_n) = Eu, F(Tx_{n+1}) = Fu. \]

From (1.1) \(T \) commutes with \(E \) and \(F \), therefore

\[E(Tx_n) = T(Ex_n), F(Tx_{n+1}) = T(Fx_{n+1}) \]

for all $n = 0, 1, 2, \ldots$. Taking $n \to \infty$ we have

\[Eu = Tu = Fu \] \hspace{1cm} (1.5)

\[T(Tu) = T(Eu) = E(Tu) = E(Eu) = E(Fu) = T(Fu) \] \hspace{1cm} (1.6)

by (1.2), (1.5) and (1.6). If \(Eu \neq F(Eu) \) we have

\[d(Eu, F(Eu)) \leq \alpha d(T(Eu), Efu) d(T(Eu), F(Eu)) \]

\[+ \beta d(Tu, Eu) + d(T(Eu), F(Eu)) \]

\[+ \gamma d(Tu, F(Eu)) + d(T(Eu), F(Eu)) + \delta d(Tu, T(Eu)) \]

\[\leq (2\alpha + \beta) d(Eu, F(Eu)) \]

\[< d(Eu, F(Eu)) \] \hspace{1cm} \(\forall \ (2\alpha + \beta) \leq 1 \)

leading to a contradiction. Hence

\[Eu = F(Eu) \] using (1.6) and (1.7) we get

\[Eu = F(Eu) = T(Eu) = E(Eu) \]
COMMON FIXED POINT THEOREM FOR THREE MAPPINGS

which shows that \(Ew \) is the common fixed point of \(E, F \) and \(T \).

Let \(Z = W \) \((Z \neq W)\) be two points in \(X \), such that

\[
Ez = Fz = Tz = z \quad \text{and} \quad Ew = Fw = Tw = w
\]

Then by (1.2) we have

\[
d(z, w) = d(Ex, Fw)
\]

\[
\leq \alpha \frac{d(Tw, Ez) d(TW, Fw)}{d(Ez, Ez)} + \beta [d(Tz, Ez) + d(Tw, Fw)]
\]

\[
+ \gamma (d(Tz, Fw) + d(TW, Ez)) + d(Tz, Tw)
\]

\[
\leq (2\gamma + \delta) d(Ex, Fw)
\]

\[
\leq (Ex, Fw) \quad [\gamma (2\gamma + \delta) < 1]
\]

leading to a contradiction. Hence \(z = w \). This implies the uniqueness of common fixed point for \(E, F \) and \(T \). This completes the proof of the theorem.

REMARKS: Taking \(E = F \) and \(T = I \) (I is the identity map on \(X \), we observe the following:

1. Taking \(\alpha = \beta = \gamma = 0 \); we obtain result due to Banach [1].
2. Taking \(\alpha = \gamma = \delta = 0 \); we obtain result due to Kannan [5].
3. Taking \(\alpha = \beta = \delta = 0 \); we obtain result due to Chatterjee [2] and Fisher [4].
4. Taking \(\alpha = \beta \); we obtain result due to Cirić.

ACKNOWLEDGEMENT

The author is thankful to Dr. P.L. Sharma, Professor and Head, Department of Mathematics, Dr. H.S. Gour Vishwavidyalaya, Sagar, for his valuable suggestions and encouragement in the preparation of this paper.

REFERENCES

2. S.K. CHATTERJEE. Fixed point theorem, complete Read. Acad. Bulgare Se. 22(1972) 727-730.

Department of Mathematics
Govt. Science P.G. College,
MANSINGHPUR, 467001 M.P.