CHAPTER 6

CONDITIONS IMPLYING COMPACTNESS OF AN OPERATOR

In this chapter, we examine the behaviour of an operator satisfying a growth condition with respect to the complement of the unit circle. We discuss various conditions on a quasi-nilpotent or a Riccati operator such that it becomes zero or compact respectively.

We know that a quasi-nilpotent operator A becomes zero under the following conditions:

1. A is spectraloid
2. A is symmetrisable with respect to a positive operator P with dense range i.e. $PA = A^*P$.
In condition (3), we have to use Reid's inequality \[28, \text{ Problem 23} \] to show \(A = 0 \).

An operator \(A \) satisfying condition (2) is not necessarily spectraloid. Thus a non-spectraloid quasi-nilpotent operator may be zero. Thus it is interesting to study various other conditions under which a quasi-nilpotent operator becomes a zero operator.

In this direction, we mention that if a quasi-nilpotent operator satisfies the condition \((G_1)\) then it is spectraloid and hence it becomes a zero operator.

In our first Theorem, we show that a quasi-nilpotent operator satisfying the growth condition with respect to the complement of the unit circle is also a zero operator.

Theorem G.1: If a quasi-nilpotent operator \(T \) satisfies the growth condition with respect to the complement of the unit circle then \(T = 0 \).

Proof: By hypothesis,

\[
r(T-z)^{-1} \leq |(T-z)^{-1}| \leq \left[d(z, \sigma'(T)) \right]^{-1} = r(T-z)^{-1} \leq 1
\]

for \(|z| = 1\).
Therefore \(\| (T-z)^{-1} \| = 1 \) for \(|z|=1\)

i.e., \((T-z)^{-1}\) is normaloid for \(|z|=1\).

For a given positive integer \(n\),

if \(1, v_1, v_2, \ldots, v_{n-1}\) are \(n^{\text{th}}\) roots of unity, then

\[(T-I) = (T^{n-1}) (T-v_1)^{-1} (T-v_2)^{-1} \cdots (T-v_{n-1})^{-1}.
\]

Since \(\| (T-v_1)^{-1} \| = 1\) for \(i=1,2,\ldots,n-1\),

\(\| (T-I) \| \leq \| T^{n-1} \| \leq \| T^n \| + 1\).

\(T\) being quasi-nilpotent, \(\| T^n \| \to 0\) as \(n \to \infty\) and \(\| T-I \| \leq 1\).

By taking \(sT\) inverse of \(T\), we also have

\(\| sT-I \| \leq 1\) for \(|s|=1\) and in particular,

\(\| (T+sI) \| \leq 1\).

Therefore \(\| (T+I)x \| \leq \| x \|\) for each \(x \in H\)

or \(2\|Tx\|^2 + 2\|x\|^2 = \| (T-x)I \|^2 + \| (Tx-x) \|^2 \leq \| x \|^2 + \| x \|^2 = 2\| x \|^2\).

This gives \(\|Tx\| = 0\) for each \(x \in H\) or \(T = 0\).

In the above Theorem, the condition \((T-z)^{-1}\) is

normaloid for each point of the unit circle cannot be
relaxed to the condition \((T-z)^{-1}\) is normaloid for some \(z\). This can be seen from the following example:

Example G.1: As in [38, Problem 160], if \(V\) is the Volterra integration operator, and if \(T = (1+V)^{-1}\) then \(\sigma(T) = \{1\}\) and \(\|T\| = 1\). Thus \((1+V)^{-1}\) is normaloid for \(z = 1\) only, \(V\) is quasi-nilpotent, even though \(V \neq 0\).

As a direct consequence of Theorem G.1, we have the following result of J.G. Stampfli [60, Theorem 1] as a Corollary:

Corollary G.1: For \(T \in \mathcal{B}(H)\), if \(T-z\) is invertible and \(\| (T-z)^{-1} \| \leq 1\) for each complex number \(z\), with \(|z| = 1\) and \(r(T) < 2\) then \(T = 0\).

Proof: Since

\[
\left[d(z, \sigma(T))^{-1} = r(T-z)^{-1} \leq \| (T-z)^{-1} \| \leq 1, \right.
\]

we have \(d(z, \sigma(T)) \geq 1\) for \(|z| = 1\).

Since \(r(T) < 2\) by hypothesis, this gives us that \(T\) is quasi-nilpotent.

Now \(T = 0\) by Theorem G.1.
Corollary 6.2: For \(T, s \in \mathcal{B}(H) \), if \(\| T \| < 2 \), \(s \) a unitary operator and \(\| (T+zs)^{-1} \| \leq 1 \) for each complex number \(z \), with \(|z| = 1 \) then \(T = 0 \).

Proof: Here

\[
\| (s^*T+z)^{-1} \| = \| s^*(T+zs)^{-1} \| = \| (T+zs)^{-1}s \| \leq 1 \text{ for } |z|=1
\]

and \(r(s^*T) \leq \| s^*T \| \leq \| T \| < 2 \).

Thus \(s^*T = 0 \) i.e. \(T = 0 \) by Corollary 6.1.

The next Corollary gives us a condition under which an isolated point in the spectrum of an operator becomes an eigenvalue.

Let \(\alpha \) be an isolated point of the spectrum of an operator \(T \) and let

\[
P = \frac{1}{2\pi i} \int_C R_\alpha \, dz
\]

where \(C \) is a circle with arbitrary small radius containing the point \(\alpha \) of \(\sigma(T) \) only and \(R_\alpha = (T-z)^{-1} \).

Then \(P \) is a spectral projection and \(T \) is invariant under \(R(P) \).
Corollary 6.2: For \(A \in \mathcal{B}(H) \), let \(\alpha \) be an isolated point of \(\sigma(A) \) and \(R(P) \) be the range space of the spectral projection \(P \) associated with \(\{ \alpha \} \). If
\[
T = (A - \alpha)/R(P) \quad \text{and} \quad (T-z)^{-1} \text{ is normaloid for each } z, \\
\text{with } |z| = 1 \quad \text{then } \alpha \text{ is an eigenvalue of } A.
\]

Proof: Since \(T \) is quasi-nilpotent \([44]\), \(T \) becomes zero by Theorem 6.1, i.e. \(Tx = Ax = \alpha x \) for \(x \in R(P) \).

This shows that \(\alpha \in \sigma_p^-(A) \).

Using the notion of spectral sets, we have

Theorem 6.2: If \(T \) is quasi-nilpotent and \(\{ 0, 1 \} \) is a spectral set for \(T \) then \(T = 0 \).

Proof: We have

\[
\| (2T-I) \| = \sup \{ \| 2z-1 \| : z = 0 \text{ or } 1 \} = 1
\]

and

\[
\| (2T-I)^{-1} \| = \sup \{ \| (2z-1)^{-1} \| : z = 0 \text{ or } 1 \} = 1.
\]

Therefore \(2T-I \) is unitary by Theorem 3-F \([59]\)

i.e. \(T \) is normal. Now \(T \) being quasi-nilpotent and normal, \(T = 0 \).

Theorem 6.1 being valid in \(C^* \)-algebra, it is applicable in the Calkin algebra. Here we have the following analogous results:
Theorem 6.3: For $T \in \mathcal{B}(H)$ and for each complex number z, with $|z| = 1$,

1. if T is a Riesz operator and $\| (T-z)^{-1} \| = 1$ then T is compact,

2. if $\rho_0(T) < 2$, $z \in \sigma_0(T)$ and $\| (\hat{T}-z)^{-1} \| = 1$ then T is compact,

3. if $\| (\hat{T}-z\hat{\delta})^{-1} \| = 1$, $\| \hat{T} \| < 2$ and $\hat{\delta}$ is unitary then T is compact.

As shown in [61, Theorem 4.3], if T is polynomially compact such that every invariant subspace of T reduces T then T is normal. Using this, we have

Corollary 6.4: Let p be a complex polynomial whose constant term has modulus less than 2. Let T be a Riesz operator such that $\| (p(\hat{T})-z)^{-1} \| \leq 1$ for each complex number z, with $|z| = 1$ and every invariant subspace of T reduces T. Then T is normal.

Proof: Let a be a constant term of the polynomial $p(z)$. Therefore $|a| < 2$ and $\sigma_0(T) = \{0\}$ by hypothesis.
Now by spectral mapping Theorem,
\[\sigma_e(\mathfrak{h}(T)) = \mathfrak{p}(\sigma_e(T)) = \mathfrak{p}(0) = \{0\} \]
This gives us \(r_0(\mathfrak{p}(T)) < 2 \).

Using Theorem 6.3, \(\mathfrak{p}(T) \) is compact.

Normality part will be followed from [S1, Theorem 4.3].

Since the numerical radius \(w \) on \(\mathcal{B}(\mathcal{H}) \) is a norm and discontinuous [25, Problem 173, 175], the condition \(w(AB) \leq w(A)w(B) \) for \(A, B \in \mathcal{B}(\mathcal{H}) \) is not valid [25] and also \(w_\rho \) for \(\rho > 2 \) is not a norm, it is not possible to apply directly the Theorem 6.1 for spectraloid or \(\rho \)-oid operators. Thus it will be interesting to investigate whether the normaloid condition in Theorem 6.1 can be replaced by \(\rho \)-oid for \(\rho > 2 \). In this direction, we give below a partial answer:

Theorem 6.4: If \(T \) is nilpotent operator of order \(n \) and \(w(T-\mathfrak{r})^{-1} \leq 1 \) for some complex number \(\mathfrak{r} \) with \(|\mathfrak{r}| = 1 \) then \(T = 0 \).

To prove this result, we need the following Lemma:
Lemma 6.1: If T is a non-zero nilpotent operator of order $n > 1$, then 0 is an interior point of $W(T)$.

Proof: Since $T^n x = T(T^{n-1} x) = 0$ for all $x \in \mathbb{H}$, we have $0 \in \sigma(T)$ and $N(T^n) = H$.

In contrary, if 0 is a boundary point of $W(T)$, then 0 becomes a normal eigenvalue of T [27]. This gives us that ascent of T is 1 [51, Lemme 3.1, p.574] or $N(2) = N(T^2) = N(T^n) = H$. i.e. $T = 0$, a contradiction.

This completes the proof.

Proof of Theorem 6.4:

Without loss of generality, we can take $a = 1$.

Let $T \neq 0$ and $w(T-1)^{-1} \leq 1$.

Since $T^n = 0$, we have

$-I = T^n - I = (T-I)(I+B)$

where $B = T + T^2 + \ldots + T^{n-1}$.

By spectral mapping Theorem, $\sigma(B) = \{0\}$. Also $B^n = 0$.

Therefore, $w(I+B) = w(I-T)^{-1} \leq 1$.
If $B \neq 0$ then by Lemma 6.1, 0 is an interior point of $W(B)$. Hence $w(B) \neq 0$ and $w(I+B) > 1$.

This contradiction gives us $w(B) = 0$ i.e. $B = 0$.

Therefore,

$$-I = (T-I)(I+B) = T-I$$

i.e. $T = 0$.

Using the fact that if T is quasi-nilpotent operator in $Q(k)$, the class of k-quasi hyponormal operators, then $T^k = 0$ [24], we derive

Corollary 6.6: If $T \in Q(k)$ is quasi-nilpotent and $w(T-z)^{-1} \leq 1$ for some z, with $|z| = 1$ then $T = 0$.

Proof: Since $T^k = 0$ by [24], T becomes zero by Theorem 6.4.