where $\sigma(n)$ denotes as usual the sum of the positive divisors of n.

Since i_k is multiplicative for all non-negative k, by theorem 1.1.3 of chapter 1 we observe that $\tau^*(n)$ and $\sigma^*(n)$ are multiplicative.

Hence for $n > 1$ with $n = p_1^{s_1} \cdots p_r^{s_r}$,

$$\tau^*(n) = \prod_i \tau^*(p_i^{s_i}) = s_1 \cdots s_r \tag{3.1.1}$$

and

$$\sigma^*(n) = \prod_i \sigma^*(p_i^{s_i}) = \prod_i p_i \sigma(p_i^{s_i-1})$$

$$= \gamma(n) \sigma\left(\frac{n}{\gamma(n)}\right). \tag{3.1.2}$$

More generally if $\sigma_k^*(n)$ denotes the sum of the kth powers ($k \geq 0$) of the core divisors of n, then it is easy to prove that

$$\sigma_k^*(n) = \left\{ \gamma(n) \right\}^k \sigma_k\left(\frac{n}{\gamma(n)}\right), \tag{3.1.3}$$

where $\sigma_k(n)$ denotes the sum of the kth powers of the divisors of n.

It is obvious that $\tau^*(n) \geq 1$ when $n > 1$, while $\tau^*(n) = 1$ if n is a prime.

Hence $\lim_{n \to \infty} \tau^*(n) = 1$.
We recall that if \(\tau(n) \) denotes the number of positive divisors of \(n \), then \(\tau(n) = o(n^{\delta}) \) for all positive \(\delta \). Clearly \(\tau^*(n) \leq \tau(n) \) for all \(n \) and hence

\[
(3.1.4) \quad \tau^*(n) = o(n^{\delta}).
\]

In fact we shall prove (3.1.4) explicitly in chapter 6.

With the aid of the prime number theorem we can prove

Theorem 3.1.1.

\[
\limsup_{n \to \infty} \frac{\log \tau^*(n)}{\log n} = \frac{\log 3}{3}.
\]

This result was proved and presented at the Indian Mathematical Society Conference, Kanpur [48]. Later through the Mathematical reviews, we noted that the same result in another terminology was independently proved by Knopfmacher [25].
Let \(h(t) \) be an arithmetic function which satisfies the condition that \(h(t) < t^\delta, \delta > 0 \). Define an arithmetic function \(H(n) \) as

\[
H(1) = 1 \\
H(n) = h(s_1) h(s_2) \ldots h(s_r),
\]

when \(n > 1 \) has the canonical form \(p_1^{s_1} \ldots p_r^{s_r} \).

Let \(M \) be the maximum value of the function

\[
\left\{ \frac{1}{h(x)} \right\}
\]

for all positive \(x \). With the aid of prime number theorem we can prove

Theorem 3.1.2

\[
\lim_{n \to \infty} \sup \frac{\log H(n) \log \log n}{\log n} = \log M.
\]

This result includes many well known results. For example

- if \(h(x) = x+1 \) then \(H(n) = \tau(n) \), the number of divisors of \(n \) and theorem 3.1.2 reduces to theorem 317 in [24].
- If \(h(x) = x \), then \(H(n) = \tau^*(n) \), number of core divisors of \(n \) and theorem 3.1.2 reduces to theorem 3.1.1 above.
When this result was referred to him, Professor M.V. Subbarao [40] brought [46] to our notice. In [46], D. Suryanarayana and R. Sitaramachandra Rao proved this theorem 3.1.2 in a similar form. In a note added in [46] at the time of proof correction, the authors point out that a generalization of the present theorem has been published independently by E. Heppner [Arch. Math. ..., 24 (1973) 63-66; M.R 47 # 8462]. Heppner's proof used less elementary methods. Through the recent Mathematical Reviews [M.R 52 # 310], we note that the present theorem (based on elementary methods) together with various other specific applications has also been published independently by J. Knopfmacher [26].

We have followed the method in [9, (pages 19-21)] to prove theorem 3.1.2. However, we do not give the details of the proof here.
In [38], Subbarao introduced exponential divisors of a positive integer \(n \). A divisor \(d \) of \(n = p_1^{s_1} \cdots p_r^{s_r} \) is said to be an exponential divisor of \(n \) if \(d = p_1^{a_1} \cdots p_r^{a_r} \) where \(a_i \) divides \(s_i \), \(i = 1, \ldots, r \). Denote the number of such divisors of \(n \) by \(\tau^e(n) \).

Then \(\tau^e(1) = 1 \)

\[\tau^e(n) = \tau(s_1) \cdots \tau(s_r). \]

We conclude this section by obtaining a result in connection with the normal order of \(\tau^e(n) \), which we believe is new and has not appeared so far anywhere in the literature.

Definition:

The normal order of \(f(n) \) is \(F(n) \) if

\[(3.1.5) \quad (1-\varepsilon) F(n) < f(n) < (1+\varepsilon) F(n). \]

for every positive \(\varepsilon \) and almost all (i.e. all but a finite) values of \(n \).

It is proved in \([24, \text{Theorem 431}]\) that the normal order of \(\omega(n) \), the number of different prime factors of \(n \) is \(\log \log n \).
Also it is proved in [24, (Theorem 432)] that if ϵ is positive, then

\[(3.1.6) \quad 2^{(1-\epsilon) \log \log n} < \tau(n) < 2^{(1+\epsilon) \log \log n}\]

for almost all numbers n.

With the aid of (3.1.6) we prove

Theorem 3.1.3

If δ is positive, then

\[(3.1.7) \quad 2^{(1-\delta) Y} < \tau^e(n) < 2^{(1+\delta) Y}\]

for almost all numbers n, where

\[Y = \log \log \log n \log \log n - \log \log 2.\]

Proof:

If $n = p_1^{s_1} \cdots p_r^{s_r}$

\[\tau^e(n) = \tau(s_1) \cdots \tau(s_r).\]

From (3.1.6) we get

\[(3.1.8) \quad 2^{(1-\epsilon) \log \log s_1} < \tau(s_1) < 2^{(1+\epsilon) \log \log s_1}\]
It is clear that $n \leq p_1 \leq 2^{s_1}$.

Therefore $s_1 \leq \frac{\log n}{\log 2}$

$\log s_1 \leq \log \log n - \log \log 2$

$= \log \log n \left(1 - \frac{\log \log 2}{\log \log n}\right)$

Since $\log \log 2$ is positive number, denote it by x.

Then we get

$\log s_1 \leq \log \log n \left(1 + \frac{x}{\log \log n}\right)$

$\log \log s_1 \leq \log \log \log n + \log \left(1 + \frac{x}{\log \log n}\right)$,

And since $\log(1+t) < t$ for $t > 0$, we get

$\log \log s_1 < \log \log \log n + \frac{x}{\log \log n}$

$= Z$ (say)

Hence from (3.1.8) we have

$2^{(1-\epsilon)^2 Z} \leq \tau(s_1) \leq 2^{(1+\epsilon) Z}$
Similarly we can prove that

\[
\frac{(1-\epsilon)^2}{2} \cdot \omega(n) < \tau(s_2) < \frac{(1+\epsilon)^2}{2} \cdot \omega(n)
\]

and so on.

Combining we get

\[
\frac{(1-\epsilon)^2}{2} \cdot \log \log n \cdot \omega(n) < \tau^3(n) < \frac{(1+\epsilon)^2}{2} \cdot \log \log n \cdot \omega(n)
\]

Since the normal order of \(\omega(n) \) is \(\log \log n \) we have

\[
\frac{(1-\epsilon)^3}{2} \cdot \log \log n < \tau^3(n) < \frac{(1+\epsilon)^2}{2} \cdot \log \log n
\]

Now we can find \(\delta > 0 \) for a given \(\epsilon > 0 \) such that \((1-\delta) < (1-\epsilon)^3 < (1+\epsilon)^2 < (1+\delta) \).
Hence we get

\[(1- \delta) \log \log n \quad < \quad \tau^6(n) \quad < \quad (1+ \delta) \log \log n, \]

And \(Z \log \log n = \{ \log \log \log n + \frac{x}{\log \log n} \} \log \log n \]
\[= \{ \log \log \log n - \frac{\log \log 2}{\log \log n} \} \log \log n \]
\[= \log \log \log n \log \log n - \log \log 2 \]
\[= Y. \]

\[(1- \delta) Y \quad < \quad \tau^6(n) \quad < \quad (1+ \delta) Y \]

Hence the proof.

Thus \(\tau^6(n) \) is about \(2 \log \log \log n \log \log n - \log \log 2. \)

We cannot simply say that "the normal order of \(\tau^6(n) \) is the above quantity", since the inequalities (3.1.7) are of a less precise type than (3.1.5). So more roughly one may say that the normal order of \(\tau^6(n) \) is about \(\log \log \log n \log \log n - \log \log 2. \)
Section 2.

Call \(n \) core perfect (or simply \(c \)-perfect) if \(\sigma^*(n) = 2n \). A few examples of such numbers are

\[2^2 \cdot 3^2, \quad 2^2 \cdot 5^2, \quad 2^3 \cdot 7^2, \quad 2^5 \cdot 31^2, \quad 2^7 \cdot 127^2, \quad 2^{11} \cdot 2047^2. \]

Note that if \(n \) is squarefree, \(\sigma^*(n) = n \). Hence if \(m \) is \(c \)-perfect and \(n \) is squarefree with \((m,n) = 1 \), then \(mn \) is also \(c \)-perfect. Thus it is sufficient to consider only squareful \(c \)-perfect numbers.
Theorem 3.2.1

A necessary and sufficient condition that n be an even squareful c-perfect number is that $n = 2^p (2^p - 1)^2$ where $2^p - 1$ is prime.

Proof:

Sufficiency:

\[n = 2^p (2^p - 1)^2 \]
\[= 2^p k^2 \quad \text{where} \quad k = 2^p - 1. \]

\[\sigma^*(n) = \sigma^*(2^p) \sigma^*(k^2) \]
\[= 2 \sigma(2^p - 1) k \sigma(k) \]
\[= 2 (2^p - 1) k (k + 1) \]
\[= 2 k^2 2^p. \]

Hence n is squareful c-perfect number.
Necessary part:

Suppose \(n \) is squareful c-perfect and is even. The prime decomposition of \(n \) is of the type

\[
n = 2^s \prod_{i=1}^{r} p_i^{s_i}
\]

= \(2^m \) (say) where \(m \) is odd.

Clearly \((2^s, m) = 1 \)

Now \(\sigma^*(n) = \sigma^*(2^s) \sigma^*(m) \)

i.e. \(2n = 2(2^s - 1) \sigma^*(m) \)

i.e. \(\sigma^*(m) = \frac{2^s m}{2^s - 1} \)

\(m + \frac{m}{2^s - 1} \)

Since \(\sigma^*(m) \) and \(m \) are integers, \(\sigma^*(m) - m \) is an integer and let it be \(d \).

i.e. \(m = d(2^s - 1) \) which implies that \(d \) divides \(m \).
Thus \(\tau(m) = m + d \) where \(m \) and \(d \) are divisors of \(m \).

But \(m \) is the sum of the core divisors of \(m \).

Any prime divisor of \(m \) is a divisor of the core divisors of \(m \).

Thus \(\tau(m) = m + d \) where \(m \) and \(d \) are divisors of \(m \).

Suppose squareful \(m \) is given by

Thus \(\tau(m) = m + d \) where \(m \) and \(d \) are divisors of \(m \).

Any prime divisor of \(m \) is a divisor of the core divisor of \(m \) and hence a divisor of the sum of the core divisors of \(m \). That means every prime divisor of \(m \) is a divisor of the core divisors of \(m \) and hence a divisor of the sum of the core divisors of \(m \).

For just two core divisors \(m \) and \(d \), so \(m \) is squareful.

Thus \(\tau(m) = m + d \) where \(m \) and \(d \) are divisors of \(m \).
That is \(m = d (2^s - 1) = p^2 \), \(p \) is a prime. This gives us \(d = (2^s - 1) = p \) since \(2^s - 1 \neq 1 \) for \(s > 1 \).

Hence \(n = 2^s (2^s - 1)^2 \) where \(2^s - 1 \) is a prime.

Thus the proof of the theorem is over.

Theorem 3.2.2

Each squareful even \(c \)-perfect number is a multiple of an even perfect number where \(n \) is perfect if \(\sigma(n) = 2n \).

Proof:

Let \(n = 2^p (2^p - 1)^2 \) be a squareful even \(c \)-perfect number.

Now \(n = 2^p (2^p - 1)^2 \)

\[= (2^p - 1) (2^p - 1) 2^p \]

\[= 2 2^{p-1} (2^p - 1) (2^p - 1) \]

\[= 2 (2^p - 1) k \]

where \(k = 2^{p-1} (2^p - 1) \) is an even perfect number.

Hence the proof.
(3.2.1) Remark:

Regarding the existence or otherwise of odd c-perfect numbers Prof. M.V. Subbarao [39] observes that "Theorem 3.2.1 says that n is core perfect iff m is perfect where $m = \frac{n}{\gamma(n)}$. The question of the existence of odd c-perfect numbers is thus linked up with that of the existence of odd perfect numbers."