In this chapter we characterize the completely multiplicative arithmetic functions by using Core Convolutions 1 and 2.

We prove the following results (Vide [51]):

1. Let \(f(1) \neq 0 \) and suppose that \(g \ast h(m) \neq 0 \) for all squareful \(m \). Then \(f \) is completely multiplicative iff \(f(g \ast h) = fg \ast fh \).

2. Let \(f,g,h \in A \) and suppose that \(g \ast h(m) \neq 0 \) for all squareful \(m \). Then \(f \) is completely multiplicative iff \(f(g \ast h) = fg \ast fh \).

Finally we denote the product in (1.2.5) by \(f \cup g(n) \) and prove the following:

3. Let \(f(1) \neq 0 \) and suppose that \(g \cup h(n) \neq 0 \) for all \(n \). Then \(f \) is multiplicative iff \(f(g \cup h) = fg \cup fh \).

We refer analogous work of Longford [29], at the end of the chapter.
Theorem 2.1

Let \(f(1) \neq 0 \) and suppose \(g \) and \(h \) be arithmetic functions such that \(g * h (m) \) does not vanish for squareful \(m \). Then \(f \) is completely multiplicative iff \(f(g \circ h) = fg \circ fh \).

Proof:

Let \(f \) be completely multiplicative.

Then \(f(g \circ h)(n) = f(n) \sum_{ab = n, \gamma(a) = \gamma(n)} g(a) h(b) \)

\[= \sum_{ab = n, \gamma(a) = \gamma(n)} f(a) g(a) f(b) h(b) \]

\[= fg \circ fh(n) \]

Conversely suppose \(f(1) \neq 0 \) and \(f(g \circ h) = fg \circ fh \).

We show first that necessarily \(f(1) = 1 \).

\[f(1) g * h(1) = f(1) g(1) h(1) \]

\[= f(1) (g \circ h)(1) \]

\[= f(g \circ h)(1) \]

\[= fg \circ fh(1) \]

\[= f(1)^2 g(1) h(1) \]

\[= f(1)^2 g * h(1) \]

and since \(f(1) g * h(1) \neq 0 \), it follows that \(f(1) = 1 \).