<table>
<thead>
<tr>
<th>Figure description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1 Oxygen adsorption-desorption mechanism on thin film</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.2 (a) Oxygen is physi- or chemisorbed onto semiconductor surface and an electron from the conduction band is lost creating a depletion layer. This decreases the conductance of the semiconductor. (b) When a target gas molecule R is present, it reacts with the adsorbed oxygen, gets removed from the surface, and releases and electron into the conduction layer. This increases the conductance of the semiconductor.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.3 Models for surface layer controlled gas sensing, showing two limiting cases: (a) continuous surface layer and (b) formation of a potential barrier (Schottky barrier) across the inter-granular boundary</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.4 Schematic diagram of charge carrier concentration in SnO₂ grains</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.5 Characteristic response of a real sensor</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.6 Input-Sensitivity relationship for ideal (solid-line) and real (dashed-line) sensor systems</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.7 Functional block diagram of a measurement system</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.8 Two-Point probe configuration</td>
<td>63</td>
</tr>
<tr>
<td>Figure 2.9 Four – Point Probe Measuring system</td>
<td>64</td>
</tr>
<tr>
<td>Figure 2.10 Four-Point collinear probe resistivity configuration</td>
<td>65</td>
</tr>
<tr>
<td>Figure 2.11 Van der Pauw four-point probe configuration</td>
<td>66</td>
</tr>
<tr>
<td>Figure 2.12 Block diagram (left) and photograph (right) of sensing chamber</td>
<td>66</td>
</tr>
<tr>
<td>Figure 2.13(a) Block diagram of sensitivity measurement setup</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.13(b) Gas sensitivity measurement set up in our laboratory</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.14 Air wedge creation and Fizeau fringe formation</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.15 Williamson-Hall plot to determine lattice strain</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.16 FEM experimental set-up</td>
<td>77</td>
</tr>
<tr>
<td>Figure 2.17 Logical layout for an XPS Instrument</td>
<td>82</td>
</tr>
</tbody>
</table>
Figure 2.18 Photographs of Kratos Analytical Axis Ultra XPS- front and side view ... 82

Figure 3.1 Experimental setup of spray pyrolysis technique 91

Figure 3.2 Photograph of (a) plane substrate, (b) undoped film and (c) Mg doped typical film (virgin) (d) eight years aged Mg doped film 93

Figure 3.3 XRD of undoped SnO$_2$ film spray deposited at 205°C 94

Figure 3.4 Diffractograms of undoped SnO$_2$ films prepared at (a) 285°C, (b) 325°C and (c) 355°C.. 95

Figure 3.5 X-ray diffractograms of SnO$_2$ films doped with (a) 0.3 wt. %, (b) 0.6 wt. % and (c) 0.9 wt. % Mg, deposited at 285°C........................ 97

Figure 3.6 X-ray diffractograms of SnO$_2$ films doped with (a) 0.3 wt. %, (b) 0.6 wt. % and (c) 0.9 wt. % Mg, deposited at 325°C................. 98

Figure 3.7 X-ray diffractograms of SnO$_2$ films doped with (a) 0.3 wt. %, (b) 0.6 wt. % and (c) 0.9 wt. % Mg, deposited at 355°C................. 99

Figure 3.8 Variation of texture coefficients for (110) and (101) planes with deposition temperature and Mg concentration 100

Figure 3.9 Variation of texture coefficients of planes for 0.6 wt. % Mg doped films deposited in the temperature range 285°C to 425°C 100

Figure 3.10 Variations in standard deviations in microstructure with Mg concentration for films deposited at temperatures 285°C – 425°C...... 104

Figure 3.11 Williamson-Hall plot for 0.6 wt% Mg doped SnO$_2$ film deposited at 355°C ... 105

Figure 3.12 Variation in micro strain with deposition temperature and Mg concentration ... 106

Figure 3.13 SEM micrographs of undoped SnO$_2$ films deposited (a) at 205°C and (b) at 425°C .. 107

Figure 3.14 Micrographs of undoped SnO$_2$ films deposited at temperatures (a) 285°C, (b) 325°C, (c) 355°C and (d) 385°C.................... 107

Figure 3.15 Micrographs of 0.6 wt. % Mg doped SnO$_2$ films deposited at temperatures (a) 285°C, (b) 355°C, (c) 385°C and (d) 425°C 108

Figure 3.16 Micrographs of SnO$_2$:Mg-0.6(325) films with magnifications of (a) x10000 and (b) x15000 ... 109
Figure 3.17 SEM images of higher Mg concentrations films deposited at 325°C, (a) 3 wt. %, (b) 4.5 wt. %, (c) 6 wt. % and (d) 7.5 wt. % Mg.

Figure 3.18 FTIR spectra of SnO$_2$:Mg-0.6(325) film in the range 340 to 4000 cm$^{-1}$.

Figure 3.19 FTIR spectra (shorter wave number region) of 0.6 wt. % Mg doped film deposited at 325°C.

Figure 3.20 EDX spectrum of undoped SnO$_2$ film deposited at 325°C, with its elemental composition in inset.

Figure 3.21 EDX spectrums of (a) 0.3 wt% Mg; (b) 0.6 wt. % Mg; and (c) 0.9 wt. % Mg doped SnO$_2$ film deposited at 325°C, with their corresponding elemental composition in insets.

Figure 3.22 absorbance spectrum of undoped and Mg doped SnO$_2$ films deposited at 325°C.

Figure 3.23 Tauc plot for undoped SnO$_2$ films deposited in the temperature range 285°C - 425°C.

Figure 3.24 Variation of two-probe resistance of films with deposition temperature and Mg concentration.

Figure 3.25 ohmic resistance (four-probe) variations with crystallite size of films.

Figure 3.26 Variation of ac conductivity with frequency (log. scale) for SnO$_2$:Mg-0.6(325) film.

Figure 3.27 Variation of ac conductivity with frequency for 0.6 wt. % Mg doped SnO$_2$ film deposited at various temperatures.

Figure 3.28 Variation of dissipation factor with frequency for films deposited at 325°C.

Figure 3.29 Variation of dissipation factor with frequency for films deposited at 325°C.

Figure 3.30 Resistance (four-probe) variation of 0.6 wt. % Mg doped SnO$_2$ film with temperature in the presence and absence of LPG.

Figure 3.31 The deviation of sensor response with operating temperature, for SnO$_2$:Mg-0.6(325) film.

Figure 3.32 Resistance variations in film with exposure time to 1000 ppm of LPG, for films deposited at 325°C.
Figure 3.33 Growth of sensor response with LPG exposure duration 129
Figure 3.34 LPG sensitivity variations, as a function of deposition temperature and Mg concentration ... 130
Figure 3.35 Dependence of sensor response towards LPG, on initial four-probe resistance of film ... 131
Figure 3.36 Variation in sensor response with intensity of (110) and (101) planes ... 133
Figure 3.37 Variation in LPG sensitivity with crystallite size along (110) and (101) planes ... 133
Figure 3.38 Loosing and gaining of sensor resistance with LPG exposure duration and recovery duration for SnO2:Mg-0.6(325) sensor 134
Figure 3.39 Response time and recovery time variations with sensor response... 135
Figure 3.40 Variation in sensor response with operating temperature towards methane gas, for Mg:SnO2-0.6(325) film 136
Figure 3.41 Resistance variations in film with exposure time to 1000 ppm of methane gas; for films deposited at 325°C, operating temperature 350°C .. 137
Figure 3.42 Variation of sensor response in methane with deposition temperature and Mg concentration, at operating temperature of 350°C ... 138
Figure 3.43 Resistance variations in film with exposure time to 1000 ppm of methane gas; for films deposited at 325°C, operating temperature 385°C ... 139
Figure 3.44 Variation of sensor response towards methane at an elevated operating temperature of 385°C, with deposition temperature and Mg concentration ... 140
Figure 3.45 Growth of sensor response with methane exposure duration 140
Figure 3.46 Loosing and gaining of four-probe sensor resistance with methane gas exposure duration and recovery duration (for SnO2:Mg-0.6(325) film) ... 141
Figure 3.47 Dependence of sensor response to methane with four-probe resistance (at room temperature) of sensor film 142
Figure 3.48 Comparison of LPG and methane sensitivity for films deposited at 325°C, with different dopant concentrations and operating temperatures ... 143

Figure 3.49 XPS wide scan spectrum for SnO$_2$:Mg-0.6(325) film with prominent photoelectron peaks labeled. Inset shows enlarged low binding energy region... 144

Figure 3.50(a) Narrow scan XPS C1s peaks of SnO$_2$:Mg-0.6(325) film with computer fitted curves. The C 1s recorded spectrum is shown in black, solid line (peaks at 284.8 eV), the violet line demonstrates the GL 30 deconvoluted peak and the fit sum in dashed red line (both peaks at 284.8 eV).. 145

Figure 3.50(b) Narrow scan XPS O1s peaks of SnO$_2$:Mg-0.6(325) film with computer fitted curves. The O 1s peak recorded spectra shown as black solid line (peaks at 530.5 eV) and the GL 30 deconvoluted peaks as blue line (peaks at 531.0 eV) and dashed red line (peaks at 532.7 eV) respectively.. 147

Figure 3.50(c) Narrow scan XPS Sn 3d peaks of SnO$_2$:Mg-0.6(325) film with computer fitted curves. The Sn 3d$_{5/2}$ peak recorded spectra in solid black line (peaks at 486.4 eV) & Sn 3d$_{3/2}$ peaks at 494.8 eV. The GL 30 deconvoluted peaks are illustrated as magenta (peaks at 486.1 eV) & blue green (peaks at 496.7 eV) and deconvolution sum of the fit in dashed red line (peaks at 486.4 eV & 494.8 eV) respectively.. 148

Figure 3.51 SEM micrographs of SnO$_2$:Mg-0.6(325) film (a) virgin sample, (b) after four years of ageing, (c) after eight years of ageing, and (d) undoped SnO$_2$ films deposited at 325°C, after eight years of ageing .. 152

Figure 3.52 FESEM image of higher magnification for the SnO$_2$:Mg-0.6(325) film, after 8 years of storage... 153

Figure 3.53 FESEM image of SnO$_2$:Mg-0.6(325) aged film (a) after etching the surface (b) after annealing at 325°C... 153

Figure 3.54 FESEM image of SnO$_2$:Mg-0.6(325) aged film, after annealing at 325°C, with higher magnification 154

Figure 3.55 XRD of SnO$_2$:Mg-0.6(325) film (a) virgin sample (b) after 8 years of storage .. 155

Figure 3.56 FTIR of eight years aged SnO$_2$:Mg-0.6(325) film............................... 156
Figure 3.57 XPS survey scan of 8 years aged SnO$_2$:Mg-0.6(325) film, (a) before etching and (b) after etching 157

Figure 3.58 Deconvolution of O 1s peak of the XPS spectra by GL30 fit on Vision processing software (a) before etching, (b) after etching 158

Figure 3.59 Variation in resistance of SnO$_2$:Mg-0.6(325) film with time (on ageing) in humid atmosphere .. 161

Figure 3.60 LPG (1000 ppm) response variation with ageing duration, of 0.6 wt. % Mg doped films deposited at temperatures 285, 325 and 355°C ... 162

Figure 3.61 LPG sensor response regain with annealing temperature, in eight years aged SnO$_2$:Mg-0.6(325) film 164

Figure 4.1 Photographs of (a) blank substrate, (b) undoped SnO$_2$ film, (c) 0.4 wt. % boron doped film, (d) 0.8 wt. % boron doped film, after six years aging and (e) 0.8 wt. % boron doped film, after eight years ageing 173

Figure 4.2 X-ray diffractograms of 0.2 wt. % boron doped SnO$_2$ films deposited at temperatures (a) 285°C, (b) 325°C and (c) 355°C 174

Figure 4.3 X-ray diffractograms of 0.4 wt. % boron doped SnO$_2$ films deposited at temperatures, (a) 285°C, (b) 325°C and (c) 355°C 175

Figure 4.4 X-ray diffractograms of 0.6 wt. % boron doped SnO$_2$ films deposited at temperatures, (a) 285°C, (b) 325°C and (c) 355°C 175

Figure 4.5 X-ray diffractograms of 0.8 wt. % boron doped SnO$_2$ films deposited at temperatures, (a) 285°C, (b) 325°C and (c) 355°C 176

Figure 4.6 Variation in texture coefficients of planes for films deposited at 285°C with different boron level .. 177

Figure 4.7 Variation of texture coefficient of major peaks, with boron concentration for films deposited at 285°C 178

Figure 4.8 Variation in texture coefficients of planes for films deposited at 325°C with different boron level .. 179

Figure 4.9 Variation of texture coefficient of major peaks, with boron concentration for films deposited at 325°C .. 180

Figure 4.10 Variation in texture coefficients of planes for films deposited at 355°C with different boron level .. 181

Figure 4.11 Variation of texture coefficient of major peaks, with boron concentration for films deposited at 355°C .. 182
Figure 4.12 Variation in texture coefficient of (110) and (101) peaks, with deposition temperature and boron concentration .. 183

Figure 4.13 Texture coefficients of planes for films deposited at 385°C and 425°C, with different boron concentrations .. 187

Figure 4.14 Variation in standard deviation in microstructure with boron concentration for films deposited at temperatures 285 to 355°C ... 188

Figure 4.15 Williamson-Hall plot for 0.4 wt. % boron doped SnO$_2$ films pyrolysed at 355°C ... 189

Figure 4.16 Variation of micro strain with deposition temperature and boron concentration .. 190

Figure 4.17 Variation of UV-Visible absorbance with wave length for typical films .. 191

Figure 4.18 Tauc plot for typical boron doped SnO$_2$ films to determine their optical band gap energy ... 192

Figure 4.19 SEM micrographs of SnO$_2$:B-0.4(355) film, with magnifications (a) x 5000 and (b) x 10000 ... 193

Figure 4.20 SEM micrographs of SnO$_2$:B-0.4(355) film, with magnifications x 25000 ... 194

Figure 4.21 EDX spectrum and elemental composition of (a) undoped SnO$_2$ film (b) 0.4 wt. % boron doped, and (c) 0.6 wt. % boron doped film, all deposited at 355°C ... 195

Figure 4.22 XPS wide scan spectrum of SnO$_2$:B-0.4(355) film, with the B 1s detail scan in the inset .. 197

Figure 4.23 Area analysis of the Sn and O peaks to determine the compositional ratio [O]/[Sn] in the film .. 198

Figure 4.24 Variation of resistance (four-probe) with crystallite size for boron doped films .. 200

Figure 4.25 Four-probe resistance change with increase in ambient temperature for SnO$_2$:B-0.4(355) film, in air, in methane ambient and in LPG ambient 201

Figure 4.26 Variation of LPG and methane sensitivity with operating temperature, for SnO$_2$:B-0.4(355) film .. 203
Figure 4.27 Actual variations in four probe resistance with exposure duration, after the exposure of LPG at 350 °C and methane at 350 and 385 °C, for SnO$_2$:B-0.4(355) film................................. 204

Figure 4.28 The LPG response variation for boron doped SnO$_2$ films with deposition temperature and boron concentration 206

Figure 4.29 The methane gas response variation for boron doped SnO$_2$ films with deposition temperature and boron concentration.............. 207

Figure 4.30 Dependence of sensor response on crystallite size of the films for LPG and methane... 208

Figure 4.31 Response and recovery curves after the admittance and removal of target gases, for SnO$_2$:B-0.4(355) film............................... 209

Figure 4.32 Variation in response and recovery time after the exposure and removal of target gases, for films with different gas sensitivity....... 210

Figure 4.33 Maximum sensor responses obtained with freshly prepared films with different concentrations of boron in LPG and methane gas, at operating temperatures of 350 and 385°C respectively... 211

Figure 4.34 Drop in LPG and methane sensitivity with ageing, for SnO$_2$:B-0.4(355)... 213

Figure 4.35 Variation in LPG sensitivity of SnO$_2$:B-0.4(355) film, with annealing temperature ... 215

Figure 4.36 X-ray diffractograms of SnO$_2$:B-0.4(355) film, (a) after one year of deposition, (b) after an ageing of six years, and (c) six years aged film after annealing at 355°C.. 216

Figure 4.37 Variation in resistance (four-probe, - at room temperature) with ageing for SnO$_2$:B-0.4(355) film .. 217

Figure 4.38 Micrograph of 0.2 wt. % boron doped SnO$_2$ film deposited at 325°C; (a) after storage of six years (b) after annealing at 325°C... 218

Figure 4.39 SEM micrograph SnO$_2$:B-0.4(355) film, after storage of six years, with a magnification of (a) x10,000 and (b) x25,000............ 218

Figure 4.40 FESEM images of SnO$_2$:B-0.4(355) aged film, after annealed at 355°C... 219
Figure 4.41 XPS survey scan spectrum of SnO$_2$:B-0.4(355) film, after six years of deposition, (a) before etching (b) after etching, plotted with same x-axis... 220

Figure 4.42 GL 30 de-convoluted peaks of slow scan C 1s peak for SnO$_2$:B-0.4(355) film, (a) before etching and (b) after etching........... 221

Figure 4.43 GL 30 deconvoluted peaks of slow scan Sn 3d peaks for SnO$_2$:B-0.4(355) film, (a) before etching and (b) after etching........... 223

Figure 4.44 GL 30 deconvoluted peaks of slow scan O 1s peak for SnO$_2$:B-0.4(355) film, (a) before etching and (b) after etching..................... 223

Figure 5.1 LPG sensing variation with deposition temperature for Cs doped films, at operating temperature 350°C......................... 230

Figure 5.2 Variation in LPG response of Cs:SnO$_2$ films with its initial resistance (four probe)... 231

Figure 5.3 LPG sensitivity variation with ageing period for typical Cs doped SnO$_2$ films.. 234

Figure 5.4 SEM micrographs of 3 wt. % Cs doped SnO$_2$ film deposited at 285°C, (a) immediately after deposition (b) after eight years of storage.. 234

Figure 5.5 Variation in LPG sensitivity with nature of dopant, for films deposited in the temperature range 285 – 355°C........................ 236

Figure 5.6 Deviation in dopant concentration and deposition temperature with ionic size of dopant to achieve maximum LPG response........ 237

Figure 5.7 Variation in average response and recovery time with ionic size of dopant... 239

Figure 5.8 Change in lattice strains as a function of dopant ionic size 240