1. Introduction

Metacarpals and Metatarsals are also known as miniature long bones. They are also known as short long bones. They possess a shaft and two ends. The proximal ends are known as bases and distal ends as their heads. In contrast to long bones, Metacarpals and Metatarsals possess a single epiphysis at one end only.

The largest foramen on the shaft of long bone is known as nutrient foramen through which nutrient artery enters and supplies the bone. (Ref. Chhatrapati and Misra)

The direction of nutrient arterial canal in long bones of mammals was described by Havers in 1691. In 1835 Berard worked on mode of ossification, growth of bones and direction of nutrient arterial canal. In 1965 Clark explained that due to more growth at the growing end nutrient arterial canal is directed away from the growing end. In 1952 Hughes found out that abnormal nutrient arterial canal was more common in femur, less common in radius and very less in other bones. In 1967 Mysorekar worked on human long bones and he found abnormal canals in fibulae due to its unusual mode of ossification.

Nutrient foramina of metacarpals and metatarsals are usually present at the middle of the shaft, but in most textbooks exact position in respect to surfaces and distance
from either end is not mentioned. Only few people had worked on nutrient foramina of these miniature long bones. The present study is organized to deal with exact position of nutrient foramen, direction of nutrient arterial canal, number of foramina and distance of foramen from basal end in metacarpals and metatarsals. In 1950 Lutken found bilateral symmetry of nutrient foramina in more than half of bones, but as the present study was done on dry collection of departmental bones, it was not possible to carry out the study of symmetry of nutrient foramina in bones of known sex.