CONTENTS

<table>
<thead>
<tr>
<th>PREFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1

A BRIEF REVIEW OF THE ELECTRICAL, OPTICAL AND STRUCTURAL STUDIES ON PHTHALOCYANINE THIN FILMS

1.1 Introduction 1
1.2 Organic Semiconductors 2
1.3 Molecular Structure 4
1.4 Electrical Studies 6
1.5 Optical Studies 14
1.6 Structural Studies 16

References 19

CHAPTER 2

APPARATUS AND EXPERIMENTAL TECHNIQUES

2.1 Introduction 27
2.2 Methods of Preparation of Thin Films 28
2.3 Thermal Evaporation Technique 28
2.4 Effect of Residual gases 30
2.5 Effect of Vapour Beam Intensity 30
2.6 Effect of Substrate Surface 31
2.7 Effect of Evaporation Rate 31
2.8 Contamination from Vapour Source 32
2.9 Purity of the Evaporating Materials 32
2.10 Production of Vacuum 32
2.11 Oil Sealed Rotary Pump 33
2.12 Diffusion Pump 35
2.13 Vacuum Coating Unit 38
2.14 Preparation of Films 44
2.15 Substrate Cleaning 44
2.16 Substrate Heater 45
2.17 Sample Annealing 45
2.18 Thickness Measurement 49
2.19 Tolansky’s Multiple Beam Interference Technique 50
2.20 Conductivity Cell 52
2.21 Keithley Programmable Electrometer 617 54
2.22 UV-Visible Spectrophotometer 58
2.23 X-ray Diffractometer 62
References 64

CHAPTER 3

ELECTRICAL CONDUCTIVITY STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS

3.1 Introduction 66
3.2 Theory 69
 3.2.A Intrinsic Excitation 72
 3.2.B Defect Excitation 72
 3.2.C Injection of Carriers from Electrodes 73
 3.2.D Band Model for Amorphous Materials 73
 3.2.E Hopping Conduction 74
3.3. Experiment 78
3.4 Results and Discussion 81
 3.4. A Dependence of Film Thickness 81
 3.4. B Dependence of Substrate Temperature 89
 3.4. C Dependence of Air-annealing 95
 3.4. D Dependence of Vacuum-annealing 102
 3.4.E Variable Range Hopping 108
3.5 Conclusion 118
References 121
CHAPTER 4

OPTICAL STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>4.2 Theory</td>
<td>129</td>
</tr>
<tr>
<td>4.3 Experiment</td>
<td>134</td>
</tr>
<tr>
<td>4.4 Results and Discussion</td>
<td>135</td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>180</td>
</tr>
<tr>
<td>References</td>
<td>182</td>
</tr>
</tbody>
</table>

CHAPTER 5

X-RAY DIFFRACTION STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>5.2 Theory</td>
<td>186</td>
</tr>
<tr>
<td>5.3 Experiment</td>
<td>187</td>
</tr>
<tr>
<td>5.4 Results and Discussion</td>
<td>188</td>
</tr>
<tr>
<td>5.4.A Effect of Substrate Temperature</td>
<td>191</td>
</tr>
<tr>
<td>5.4.B Effect of Vacuum-annealing</td>
<td>197</td>
</tr>
<tr>
<td>5.5 Conclusion</td>
<td>202</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
</tr>
</tbody>
</table>

CHAPTER 6

SUMMARY AND CONCLUSION

204