List of Tables

Table 2.1: Significant Pre-seismic earthquakes that occurred in recent and historic times in and around the Andaman-Nicobar region. Rupture areas and earthquake locations, where-ever available are plotted in Fig. 2.3. 1Iyengar et al., 1999, 2Imperial Gazetteer of India, 1909, 3Ortiz and Bilham, 2003, 4Bapat et al., 1983, 5NEIC, USGS, 6Rajendran et al., 2003. .. 26

Table 3.1: Occupation history of the stations with number of days occupied at each point, established at Andaman-Nicobar Islands till 2005 as part of this work. Some of the control points are not re-occupied in subsequent surveys due to entry restrictions or logistical problems. (See Figure 3.1) .. 41

Table 3.2: Details of the receiver/antenna pair used for this study at each location. For the years 2002, 2004 and 2005 Leica receiver/antenna and for 2004 Trimble antenna/receiver pairs were used. Continued in Table 3.3. .. 41

Table 3.3: Details of the receiver/antenna pair used, continuation of Table 3.2. .. 41

Table 4.1: Computed absolute velocity(mm/yr) of the control points in ITRF00 reference frame. .. 66

Table 4.2: Computed relative velocity(mm/yr) of the control points with respect to IISC, Bangalore. .. 67

Table 5.1: Summary of the co-seismic changes recorded as part of this study from the field observations on ground level changes along the Andaman-Nicobar Islands. .. 81

Table 5.2: Co-seismic horizontal and vertical offsets, in meters, of the Andaman-Nicobar GPS control points. .. 85

Table 5.3: Slip Model parameters. Long - Logitude is °E, Lat - Latitude is °N, Length - Length of the fault (km), Width - Width of the slip plane (km) Depth - Depth of the up-dip edge (km), Dip - Dip angle of the slip plane in decimal degrees (°), Strike - Strike of the fault in decimal degrees (°), Slip - Slip in meters (m), Rake - Rake of the fault in decimal degrees (°). The latitude and longitude specifies the location of the GPS sites along which the slip distribution was computed, and dip angles indicate planes that dip downward from the surface. .. 93
List of Figures

Figure 1.1: Schematic cross section of a subduction zone showing its first order geometry and features, modified from Burgmann, 2005. .. 2

Figure 1.2: Cartoon showing different types of subduction zone earthquakes relative to the subducting slab (Venkataraman and Kanamori, 2004). . . 4

Figure 1.3: Major forces acting in a subduction zone, modified from Spence, 1987 and Lallemand et al., 2005. .. 4

Figure 1.4: Subduction zone earthquake deformation cycle - A) The cycle begin with the inter-seismic strain accumulation in the upper plate above a locked part of the plate boundary. B) Accumulated strain is released through slip on the locked zone during the co-seismic part of the cycle. During large earthquakes region nearest to the plate boundary is uplifted; and the arc-ward of the zone suddenly subsides (Plafker, 1972, Ando, 1975, Nelson et al., 1996). .. 5

Figure 1.5: History of earthquakes along the Nankai trough. The region is divided into four rupture zones (A-D). In some earthquakes the entire region has slipped at once; in others, slip was divided into several events over a few years. Given such repeatability, it seems likely that a segment of a subduction zone that has not slipped for some time constitutes a seismic gap and is due for an earthquake (Shimazaki and Nakata, 1980). ... 7

Figure 1.6: Various scenarios for buildup and release of stress on a fault - earthquake recurrence models: (a) Reid's perfectly periodic model showing regular stick-slip faulting where the slip will be the same for each event and recurrence interval constant. (b) time-predictable model, where the failure stress remains constant and the time to next earthquake can be calculated from the stress drop of the preceding event. (c) slip-predictable model, where the earthquakes start at variable stress state, but falls to a constant base level. Here the slip of the next earthquake can be predicted, but not the time (Shimazaki and Nakata, 1980). ... 9

Figure 2.1: Map showing the major tectonic segments of Andaman-Sumatra subduction zone. Area of interest for this thesis lies in a zone between 5-15°N and 92-98°E. Rupture area for 2004 earthquake is marked in yellow, historic rupture areas also marked. (modified from Kayal et al., 2004.) ... 13
Figure 2.2: Dipping subducting interface (Benioff zone) at various segments of Andaman-Nicobar arc using epicentral data from USGS for a period of 1917-1974 (Srivastava and Chaudary, 1979).

Figure 2.3: Significant earthquakes and their rupture areas along the Sunda-Andaman plate boundary. An, Andaman Islands; Nb, Nicobar Islands; Sm, Simuleue Island; Bt, Batu Island; Mt, Mentwai Island; Ac, Aceh province; Ni, Nias Island; NER, Ninetyeast ridge; WFR, Warton fossil ridge; IFZ, Investigator fracture zone. Filled arrows represent Indian and Australian plate velocities and direction (DeMets et al., 1994a). Modified from Briggs et al., 2006.

Figure 2.4: Cone of Barren Island volcano as on May, 2002 (view from west). See Fig. 2.1 for location. Inset shows the composite eruption rate, smoothened using a moving average filter, shows an accelerated eruption ~50 years after the 1941 earthquake. (Rajendran et al., 2003).

Figure 2.5: Location of December 26, 2004 earthquake shown by centroid moment tensor (CMT) solution beach ball, and aftershocks (black dots) till 1st March, 2005. Epicentral data source: NEIC, USGS, CMT: Harvard University CMT database. Extent of rupture zone can be clearly marked by the extent of aftershocks.

Figure 3.1: GPS control points used in this study to constrain the tectonic deformation of the Andaman-Nicobar arc. Red inverted triangles are international geodetic stations. Remaining blue and green ones are established in the islands as part of this study. Station data sets from green inverted triangles were used for pre-seismic velocity computation. Among the blue inverted triangles, except HBAY and CBAY remaining were not re-occupied after December 26, 2004 earthquake due to entry restrictions or logistical problems. See, Table 3.1 for occupation history.

Figure 4.1: A) Spatial distribution of Andaman-Nicobar seismicity, M≥4.0, for a period of January 1, 1973 to December 25, 2004, Data Source: USGS, NEIC database. B-D) zones marked for depth analysis.

Figure 4.2: Depth wise distribution of earthquakes at 12 degree north (zone marked B in Fig. 4.1). Note the trend of dipping slab. Shallow earthquakes east of 94°E are due to the Andaman spreading ridge (ASR) events.

Figure 4.3: Depth wise distribution of earthquakes at zone marked C in Fig 4.1.
Figure 4.4: Depth wise distribution of earthquakes at zone marked D in Fig.4.1 .. 45

Figure 4.5: Upper panel shows the wire-frame surface topographic section along 12°N, showing the trench, accretionary prism (Andaman Islands), volcano (Barren Island), and the Andaman spreading center. Lower panel corresponds to the gridded wire-frame surface map of the hypocentral data along the same profile, showing the trend of the dipping Benioff zone, volcanic earthquakes, and shallow spreading ridge earthquakes. Gridded topography data is from ETOPO-5 from National Ocean and Atmospheric Administration (NOAA) and the epicentral data is from USGS, NEIC database of events M≥4.0. 47

Figure 4.6: Gridded wire-frame surface map of the hypocentral data distribution of Andaman-Nicobar earthquakes along the island arc. It shows the trend of the dipping plate interface along the arc which is representative of the subduction geometry. Black line shows trench location from Bird(2003). Black patches are location of Andaman-Nicobar Islands. Colour scale gives hypocentral depth information. 48

Figure 4.7: Temporal pattern of Andaman-Nicobar seismicity from 1973-2004 for the events M≥4.9. Maximum magnitude of earthquake reported is marked above for the particular year. Data Source: USGS, NEIC database. .. 50

Figure 4.8: Significant pre-seismic earthquakes of M≥6.0 along the Andaman-Nicobar arc. .. 52

Figure 4.9: Centroid moment tensor solution mechanisms of M>4.9 earthquakes (1973-2004) from Harvard CMT catalogue. Events are size wise scaled for magnitude and colour wise scaled for depth. Red - 0 to 40 km, green - 40 to 80 km and blue - 80 to 300 km deep. Plate boundary locations are from Bird (2003). Inverted yellow triangles are volcanoes. 56

Figure 4.10: The directions of P- and T-axes and type of faulting derived from focal mechanisms of the earthquakes with hypocentral depth less than 40 km. The direction of the lines indicates the orientation of P-axis for strike slip and thrust faulting and T-axis for normal faulting. Rose diagrams show S_H and S_h (maximum and minimum horizontal stresses) for different tectonic regimes (marked by dashed areas). 57
Figure 4.11: The directions of P- and T-axes and type of faulting derived form focal mechanisms of the earthquakes with hypocentral depth greater than 40 km. The direction of the lines indicates the orientation of P-axis for strike slip and thrust faulting and T-axis for normal faulting. Rose diagrams show S_H and S_h (maximum and minimum horizontal stresses) for different tectonic regimes (marked by dashed areas).

Figure 4.12: Generalized stress map of the Sumatra-Andaman region within 40 km depth. Converging arrows indicate compressions and diverging arrows indicate extension.

Figure 4.13: Generalized stress map of the Sumatra-Andaman region of >40 km depth. Converging arrows indicate compressions and diverging arrows indicate extension.

Figure 4.14: Time series plot of PBLR, Port Blair GPS point from 2002-2004 in ITRF00 reference frame.

Figure 4.15: Time series plot of DGLP, Diglipur, North Andamans GPS point from 2003-2004 in ITRF00 reference frame.

Figure 4.16: Time series plot of CARN, Car Nicobar GPS point from 2003-2004 in ITRF00 reference frame.

Figure 4.17: Absolute velocity vectors of the campaign and IGS stations used in this study. The frame of reference is ITRF00.

Figure 4.18: Relative velocity vectors of the campaign and IGS stations used in this study. The frame of reference is ITRF00. Velocity vectors are computed with respect to IISe, Bangalore.

Figure 4.19: Vector closure diagram for the Port Blair segment. 54 mm/yr (N22°E) and 37.2 mm/yr (320°) are the Indian plate velocity with respect to eurasia (DeMets et al., 1994a) and Andaman spreading velocity (Curray, 2005) respectively. Present day Port Blair convergence velocity computed in this study samples only 15% of expected full rate convergence of ~40 mm/yr.
Figure 5.1: Co-seismic deformational features observed, as part of this study, around North Andamans. Respective locations are marked by arrows on the map. a) emerged coral bed and mangrove swamp at Landfall Island. b) receded post-earthquake shoreline at Ariel Bay. c) pre-earthquake line of barnacles on a pillar at Ariel Bay jetty. d) co-seismic lateral shift on the span of the bridge connecting North Andaman and Middle Andaman. e) co-seismic sandblow feature seen near Magar Nalla, Diglipur. f) uplifted coral bed in the western margin of Interview Island.

Figure 5.2: Co-seismic deformational features observed, as part of this study, around South Andamans. Respective locations are marked by arrows on the map. a) submerged mangrove forest at Mundapahar beach, Port Blair. b) flooded Sipighat, Port Blair. c) tide gauge record at Chatham observatory run by NIOT. d) tsunami soil deposits at Chidiyatapu beach, Port Blair. e) aerial view of the uplifted western coast of North Sentinel Island (photo courtesy: Indian Coast Guard).

Figure 5.3: Co-seismically Hut Bay emerged ~ 0.35 m as evident from the emerged beaches there. Location of Hut Bay marked by arrow. No other field observations available due to entry restrictions being an Onge tribal reserve.

Figure 5.4: Co-seismic deformational features observed, as part of this study, in Car Nicobar. Respective locations are marked by arrows on the map. a) subsided coastline at Teetop, north western coast of Car Nicobar. b) subsided coastline at Malacca, east coast of Car Nicobar.

Figure 5.5: Co-seismic deformational features observed, as part of this study, around Great Nicobar. Respective locations are marked by arrows on the map. a) post-earthquake photograph of Indira Point, basement of the light house completely submerged in sea. b) pre-earthquake photograph of the base of Indira point light house. c) subsided jetty at Kamorta, Nancowry.

Figure 5.6: Time series plot of North, East and vertical offsets of PBLR, Port Blair; and DGLP, Diglipur GPS sites from September, 2004 (left panel) and January, 2005 (right panel) campaigns.

Figure 5.7: Time series plot of HBAY, Hut Bay, Little Andamans and CARN, Car Nicobar, GPS points from september, 2004 (left panel) and January, 2005 (right panel) campaigns.

Figure 5.8: Time series plot of CBAY, Campbell Bay, Great Nicobar control point from September, 2004 (left panel) and January, 2005 (right panel) campaigns.
Figure 5.9: Computed scaled co-seismic horizontal and vertical offsets of Andaman-Nicobar GPS control points.

Figure 5.10: Best fit modelled fault geometry and slip distribution (see, Table 5.3), for the co-seismic displacement vectors observed. Red vectors are from observed GPS data and blue ones are modelled.

Figure 5.11: Modelled co-seismic across the arc slip profile at the Middle Andaman.