References

References

Chaouloff F, Laude D, Baudrie V. Ganglionic transmission is a prerequisite for the adrenaline releaseing and hyperglycemic effects of 8-OH-DPAT. Eur J Pharmacol 1990t, 185: 11-18.

References

Doyle VM, Creba JA, Ruegg UT, Hoyer D. Serotonin increases the production of inositol phosphates and mobilizes calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 1986, 333: 98-103.

References

Endo Y. Evidence that the accumulation of 5-hydroxytryptamine in the liver but not in the brain may cause the hypoglycemia induced by 5-hydroxytryptophan. Br J Pharmacol 1985, 85: 591-598.

References

Himsworth HP. Diabetes mellitus: its differentiation into insulin sensitive and insulin insensitive types. Lancet 1936, 1: 117-121.

Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients, the essential study. Diabetes Care 1994, 17: 561-566.

213
Laude D, Baudrie V, Martin GR, Chaouloff F. Effects of the 5-HT\textsubscript{1} receptor agonists DP-5-CT, CGS 12066B, and RU 24969 on plasma adrenaline and glucose levels in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 1990, 342: 378-381.

Lee HZ, Wu CH. Serotonin-stimulated increase in cytosolic Ca2+ in cultured rat heart endothelial cells. Eur J Pharmacol 1999, 384: 53-60.

Malhotra A, Reich D, Reich D. Experimental diabetes is associated with functional activation of protein kinase Ce and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 1997, 81: 1027-1033.

References

References

Wilkes B. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: time course and mechanisms. Endocrinology 1987, 120: 1291-1298.

