CHAPTER 4

METRIZATION OF QUASI NAGATA SPACES
4.1 : Introduction and Definitions

Developable spaces, Nagata spaces and γ-spaces are important generalized metric spaces. An ingenious approach to study the generalized metric spaces was introduced by R.N. Heath [36] and pursued by R.E. Hodel [29], [30]. This approach describes a generalized metric property of a space X by a sequence of open cover of X.

Quasi-Nagata and quasi-γ-spaces were introduced by R.W. Martin in [39] and [40]. They are generalizations of \aleph-spaces and γ-spaces respectively of R.E. Hodel [30]. We study these further and derive their metrization theorems.
In [30], H. N. Martin proved that a T_2 quasi-Nagata, γ-space is metrizable. In this chapter it is shown that ' γ-space' in the above result can be replaced by ' \mathbb{E}-space' of [33].

In this chapter, whenever we consider a sequence
\[\{ g(n, x) : x \in X \} \]
for \(n \leq \infty \) of open covers of a space \(X \), it is assumed to satisfy the following:

1. \(x \in g(n, x) \) for each \(n \in \mathbb{N} \) and \(x \in X \).
2. \(g(n+1, x) \subseteq g(n, x) \) for each \(n \in \mathbb{N} \), \(x \in X \).

The following definitions of developable spaces, $u\Delta$-spaces, Nagata spaces, semi-stratifiable spaces and first countable spaces are not original but they are their characterizations proved in the reference indicated with them.

In view of remark 2.1 of [30] if a phrase ' \(p \) is a cluster point of \(\{ x_n \} \)' appears in the following definitions then we mean that \(\{ x_n \} \) converges to \(p \).
Definition 4.1.1: A space X is called a developable space $\square 30 \square$ (uA -space $\square 30 \square$) if there is a sequence
\[\{g(n, x) : x \in X \} \] of open covers of X such that
\[\forall n \in \mathbb{N} \]
if $\{p, x_n\} \subseteq g(n, y_n)$ for $n = 1, 2, 3, \ldots$, then p is a cluster point of $\{x_n\}$ ($\{x_n\}$ has a cluster point).

Definition 4.1.2: A space X is called a γ-space (γ-space) if there is a sequence
\[\{g(n, x) : x \in X \} \] of open covers of X such that
\[\forall n \in \mathbb{N} \]
if $y_n \subseteq g(n, p)$ and $x_n \subseteq g(n, y_n)$ for $n = 1, 2, \ldots$, then p is a cluster point of $\{x_n\}$ ($\{x_n\}$ has a cluster point).

Definition 4.1.3: A space X is called a Nagata space $\square 30 \square$ (all-space $\square 30 \square$) if there is a sequence
\[\{g(n, x) : x \in X \} \] of open covers of X such that if
\[g(n, p) \cap g(n, x_n) \neq \emptyset \] for $n = 1, 2, \ldots$ then p is a cluster point of $\{x_n\}$ ($\{x_n\}$ has a cluster point).
Definition: 4.1.4: \(\square \) : A space \(X \) is called a quasi-\(Y \)-space if there is a sequence \(\{ g(n, x) : x \in E \}_{n=1}^{\infty} \) of open covers of \(X \) such that if a sequence \(\{ Y_n \} \) converges and \(x_n \in g(n, Y_n) \) for \(n = 1, 2, \ldots \) then \(\{ x_n \} \) has a cluster point.

Definition: 4.1.5: \(\square \) : A space \(X \) is called quasi-\(Y \)-space if there is a sequence \(\{ g(n, x) : x \in X \}_{n=1}^{\infty} \) of open covers of \(X \) such that if \(\{ Y_n \} \) converges and \(Y_n \in g(n, x_n) \) for \(n = 1, 2, \ldots \) then \(\{ x_n \} \) has a cluster point.

Definition: 4.1.6: A space \(X \) is called a semi-stratifiable space \(\square \) \((\mathcal{Y} \)-space \(\square \)) if there is a sequence \(\{ g(n, x) : x \in X \}_{n=1}^{\infty} \) of open covers of \(X \) such that if \(p \in g(n, x_n) \) for \(n=1, 2, \ldots \) then \(p \) is a cluster point of \(\{ x_n \} \) (\(\{ x_n \} \) has a cluster point).
Definition 4.1.7: A space X is called a first countable space $\square 39\square$ (ω-space $\square 43\square$), if there is a sequence $\{g(n, x) : x \in X\}^\infty_{n=1}$ of open covers of X such that if $x_n \in g(n, p)$ for $n = 1, 2, \ldots$, then p is a cluster point of $\{x_n\}$ ($\{x_n\}$ has a cluster point).

Definition 4.1.8: A space X is called a Ω-space $\square 22\square$ if there is a sequence $\{g(n, x) : x \in X\}^\infty_{n=1}$ of open covers of X such that if $\{x_n : p\} \subset g(n, x_n)$ for $n = 1, 2, \ldots$ and $\{y_n\}$ has a cluster point then p is a cluster point of $\{x_n\}$ ($\{x_n\}$ has a cluster point).

Definition 4.1.9: A space X is called a ω-stratifiable space if there is a sequence $\{g(n, x) : x \in X\}^\infty_{n=1}$ of open covers of X such that if K is a compact subset of X and $y \notin K$ then there is an integer n such that $y \notin \bigcup\{g(n, x) : x \in K\}$.
A space X is called \textit{c-Nagata} if it is \textit{c}-stratifiable and first countable.

\textbf{Definition 4.1.10} \cite{32}. A space X is called \textit{c-semistratifiable} if there is a sequence

$$\{g(n, x) : x \in X\}_{n=1}^{\infty}$$

of open covers of X such that

if X is a compact subset of X and $y \notin X$ then there is an integer n such that $y \notin \bigcup\{g(n, x) : x \in X\}$.

\textbf{Definition 4.1.11} \cite{30}. A space X is called a \textit{c-space} if there is a sequence

$$\{g(n, x) : x \in X\}_{n=1}^{\infty}$$

of open covers of X such that

(a) $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}$ for each $x \in X$ and

(b) if $y \in g(n, x)$ then $g(n, y) \subseteq g(n, x)$.

\section*{4.3: Quasi-Nagata spaces, Quasi-γ-spaces and their metrization theorems}

\textbf{Theorem 4.3.1:} A first countable space X is well

iff it is Quasi-Nagata.
Proof : Necessity is proved in \(\square \).

To prove sufficiency, let \(\{g(n, x) : x \in \mathbb{K}\}_{n=1}^{\infty} \) and
\(\{h(n, x) : x \in X\}_{n=1}^{\infty} \) be quasi-Nagata and first countable sequences for \(X \).

Let \(k(n, x) = g(n, x) \cap h(n, x) \) for each \(n \in \mathbb{N} \)
and \(x \in X \). Then \(\{k(n, x) : x \in X\}_{n=1}^{\infty} \) is both a first countable and a quasi-Nagata sequence for \(X \).

Suppose \(x_n \in k(n, p) \cap k(n, x_n) \) for each \(n \in \mathbb{N} \).
Then \(\{x_n\} \) converges to \(p \) and hence \(\{x_n\} \) has a cluster point.

Theorem : 4.2.3 : If a space \(X \) is first-countable and quasi-\(\gamma \), then it is a \(\nu \gamma \)-space.

Proof : Similar to that of theorem 4.2.1.

Theorem : 4.2.3 : \(\square \). Every quasi-Nagata, \(\gamma \)-space is metrizable.

Proof : Nodel \(\square \) proved that a \(\gamma \)-, \(\omega \)-space is metrizable. Since \(\gamma \)-spaces are first countable, the result follows using theorem 4.2.1.
In [30], K.B. Lee proved that a space X is a Nagata space (γ-space) iff it is a c-Nagata and cell-space ($w\gamma$-space). In view of this result and theorems 4.2.1 and 4.2.2 the following theorems are obvious.

Theorem 4.2.4: A space X is Nagata iff it is c-Nagata and quasi-Nagata.

Theorem 4.3.3: A space X is a γ-space iff it is a c-Nagata and a quasi-γ-space.

K.B. Lee [30] also proved that a regular space X is a γ-space iff it is a c-stratifiable, $w\gamma$-space.

This result can be generalised to the following:

Theorem 4.3.6: A regular space X is a γ-space iff it is a c-stratifiable, quasi-γ-space.

Proof: We note that

(i) every quasi-γ-space is a q-space
(ii) each point is G_δ in a c-stratifiable space
(iii) Lutzer showed that a regular, c-space in which each point is G_3, is first countable $\square 37\square$.

By (i), (ii) and (iii) X is a c-Nagata space. Now apply theorem 4.3.6.

Theorem 4.3.7: If X is a regular, semi-stratifiable, quasi-γ-space then it is a Moore space.

Proof: Using the technique of the proof of theorem 4.2.1 it can be shown that a semi-stratifiable, quasi-γ-space is a $\omega\alpha$-space. Hodel $\square 30\square$ proved that a regular, semi-stratifiable, $\omega\alpha$-space is developable and hence a Moore space. Hence X is a Moore space.

Theorem 4.3.8: A regular, c-semi-stratifiable, quasi-Nagata, quasi-γ-space X is metrizable.

Proof: X being quasi-Nagata is a δ-space. Hence by theorem 3 of Martin $\square 41\square$ it is semi-stratifiable. By theorem 4.3.7, X is developable. Moreover X is $\omega\beta$. Hence it is metrizable.

Corollary: 4.3.9: A regular, c-semi-stratifiable, $\omega\beta$-space X is a Nagata space.
Proof: By the same argument as in the proof of the above theorem, X is semi-stratifiable. Hence it is an α-space. Nadler [34] proved that a regular, ultra-α-space is always a Nagata space. Hence X is Nagata.

Corollary: 4.2.10: If a space X is quasi-γ and Nagata then it is metrizable.

Proof: Since X is first countable it is ωr. R.H. Lee [36] proved that a Nagata, ωr-space is metrizable. Hence X is metrizable.

In [23], Fletcher and Lindgren proved that if a space X is a Ω-space and an α-space then it is developable.

Theorem: 4.3.11: If a space X is a Ω-space and a quasi-Nagata space then it is metrizable.

Proof: By the above result of Fletcher and Lindgren, X is developable. Also X is ultra-Ω. Hodel [35] proved that a developable, ultra-Ω-space is metrizable. Hence X is metrizable.

The above theorem generalises a well known theorem of R.H. Hodel [30] which states that a ultra-γ-space is metrizable.