BIBLIOGRAPHY


Arvensen, J. C. Millard, J. P. and Weaver, E. C. (1973); Remote sensing of chlorophyll and temperature in Marine and fresh waters, Astronautica Acta 18, pp.229-239


Austin, R.W. and Petzold, T. J. (1981); The determination of the diffuse attenuation coefficient of sea water using Coastal Zone Colour Scanner, in Oceanography from space, edited by J F R Gower, (Plenum, New York), 239-256


Banse K. (1984); Overview of Hydrology and Associated Biological Phenomenon in the Arabian Sea, off Pakistan; Marine Geology and oceanography of Arabian sea and Coastal Pakistan, pp 271-303

Banse, K. and McClain, C.R.M. (1986); Winter blooms of phytoplanktons as observed by the Coastal Zone Color Scanner, Mar. Ecol. Progr. Ser., 34, 201-211

Barth, H., Grisard, K., Holtsch, K., Reuter, R. and Stute, U (1997); Polycromatic


Butler, W.L. (1962); Absorption of light by turbid materials, Journal of the Optical Society of America. 52, 292-299


Carder, K.L., Steward, R.G., Harvey, G.R. and Ortner, P.B. (1989b); Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll, Limnology and Oceanography. 34, 68-81


Cleveland, J.S., and Weidemann, A.D. (1993); Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters, Limnology and Oceanography. 38, 1321-1327


Duntley, S.Q. (1942); The optical properties of diffusing materials, Journal of the Optical Society of America. 32, 61-70


Fry, E.S. (2000); Visible and near-ultraviolet absorption spectrum of liquid water: comments. Applied Optics. 39, 2,743-2,744


Gordon, H.R. (1989a); Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?, Limn. Ocean., 34(8), 1389


139


Gordon H. R. and Ding, K (1992); Self-shading of in-water optical instruments, Limnol. Oceanogr. 37, 491-500


Hoge, F.E., Vodacek, A. and Blough, N.V. (1993); Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements, Limnology and Oceanography 38, 1394-1402.

140


Jerlov, N.G. (1957); A transparency-meter for ocean water, Tellus, 9: 229-233.

Jerlov, N. G. (1976); Marine Optics, Elsevier, Amsterdam, p. 231


Kiefer, D.A., Olson, R.J. and Wilson, W.H. (1979); Reflectance spectroscopy of marine phytoplankton. Part 1. Optical properties as related to age and growth rate, Limnology and Oceanography. 24, 664-672

Kiefer, D.A., and SooHoo, J.B. (1982); Spectral absorption by marine particles of coastal waters of Baja California, Limnology and Oceanography. 27, 492-499


Kishino, M. N., Okami, M., Takahashi, and S. Ichimura (1986); Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea, Limnology and Oceanography. 31, 557-566

Kou, L., Labrie D. and Chylek, P. (1993); Refractive indices of water and ice in the 0.65 to 2.5 μm spectral range, Appl. Opt., 32: 3531-3540.


144


Petzold, T.J., (1972); Volume scattering functions for selected ocean waters, Contract No. N62269-71-C-0676, UCSD, SIO Ref. 72-78.


147


Prasanna, K.S., Madhupratap, M., Dileep Kumar, Gauns, M., Muraleedharan, P.M., Sarma V.V.S.S. and S.N. De Souza (2000); Physical Control of Primary productivity on a seasonal scale in Central and eastern Arabian Sea, Proc. Indian Acad. of Science (Earth Planetary Science), Vol 109, No 4, pp 433-441.


Rovinove, C. J. (1982); Computation with physical values from Landsat digital data, Photogrammetry Engineering and Remote Sensing, 48, 781-784.


Sathyendranath, S., Prieur, L. and Morel, A. (1989); A three component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters, Int. J. Remote Sensing, 10, 1373-1394


Shibata, K. (1958); Spectrophotometry of intact biological materials. Absolute and relative measurements of their transmission, reflection and absorption spectra. Journal of Biochemistry, 45, 599-623

Shifrin, K.S. (1988); Physical Optics of Ocean Water, New York, American Institute of Physics, 285


Smith, R.C. and Baker, K.S. (1978a); The bio-optical state of ocean waters and remote sensing, Limnology Oceanography, 23, 247-249.


Tassan, S. and Ferrari G.M. (1995a); An alternative approach to absorption measurements of aquatic particles retained on filters. Limnology and Oceanography 40, 1,358-1,368

Tassan, S. (1995b); Proposal for the measurement of backward and total scattering by mineral particles suspended in water, Applied Optics 34, 8, 345-8,353


Timofeeva, V.A. (1960); Instrument for determining the attenuation coefficient of directed light in the sea, Sov. Oceanogr. 1962 Ser., 4: 79-83

Trees, C.C. and Voss, K.J. (1990); Optoacoustic spectroscopy and its application to molecular and particle absorption, Ocean Optics X, SPIE 1302: 149-156.

Tyler, J. E. (1975); The in-situ quantum efficiency of natural phytoplankton populations, Limnology and Oceanography, 20, 976-980.

Tyler, J.E. and Smith, R.C. (1970); Measurement of Spectral Irradiance Underwater, Gordon and Breach, New York, 103pp


Voss, K.J. (1989); Use of the radiance distribution to measure the optical absorption coefficient in the ocean, Limnol. Oceanogr., 34: 1614-1622.

Walker, R.E. (1994); Marine Light Field Statistics, Wiley


Wattenberg, H. (1938); Untersuchungen über Durchsichtigkeit und Farbe des Seewassers, I. Kieler Meeresforsch.


Yentsch, C.S. (1957); A non-extractive method for the quantitative estimation of chlorophyll in algal cultures, Nature, 179, 1302-1304

Yentsch, C.S. (1962); Measurement of visible light absorption by particulate matter in the ocean, Limnology and Oceanography, 7, 207-217


Zibordi G., Doyle J. P. and Hooker S. B. (1999); Offshore tower shading effects on in-water optical, J. Atmos. Ocean. Technol., 16 (11), Part 2, 1767