CONTENTS

Acknowledgements vi

Preface ix

List of Tables xiv

List of Figures xv

Acronyms xxii

Chapter 1: Introduction

1.1 Prelude to the study 2
1.2 Relevance of the study 6
1.3 Monsoon and its intraseasonal oscillation 7
1.4 Role of water vapour flux in Indian Monsoon 10
1.5 Role of water vapour in climate change studies 12
1.6 Impact of satellite data in NWP model 15
1.7 Summary 16

Chapter 2: Data used and sensors relevant to the study

2.1 Introduction 18
2.2 Satellite sensors 18
 2.2.1 NOAA/TOVS 18
 2.2.2 TRMM/TMI 20
 2.2.3 MODIS 21
2.2.4 QuikScat 22

2.3 Data description 23
 2.3.1 Water Vapour 23
 2.3.2 Wind Speed 23
 2.3.3 Sea Surface Temperature 24
 2.3.4 Outgoing longwave radiation 24
 2.3.5 Precipitation 24

2.4 Methods 25
 2.4.1 Time series analysis 25
 2.4.2 Fourier analysis 26
 2.4.3 Wavelet analysis 27
 2.4.4 Composite analysis 28
 2.4.5 Specific humidity computation using NOAA/TOVS data 28
 2.4.6 Evaporation computation using TRMM/TMI data 30

2.5 Summary 31

Chapter 3: Onset of south west monsoon 32

3.1 Introduction 33

3.2 Moisture field and its dynamical change during onset period 35
 3.2.1 Using NOAA/TOVS 35
 3.2.2 Using TRMM/TMI 39
 3.2.2.1 Temporal variation 39
 3.2.2.2 Spatial distribution 40

3.3 Wind field change during onset period 41
 3.3.1 Using TRMM/TMI data 41
 3.3.2 Using QuikScat data 42
 3.3.2.1 Spatial distribution 42
 3.3.2.2 Temporal variation 43
 3.3.3 Using NCEP data 44
3.4 TWV, SWS and SST change from TMI 46
 3.4.1 Spatial distribution 46
 3.4.2 Temporal variation 48
 3.4.3 Lead-lag relationship among geophysical parameters 49
3.5 MJO studies using OLR data 50
3.6 Conclusion 51

Chapter 4: Evolution of water vapour fields during south west monsoon 64
4.1 Overview 65
4.2 Evaluation of satellite derived specific humidity and TWV 66
4.3 Water Vapour fields from TRMM/TMI and NOAA/TOVS 67
 4.3.1 Seasonal variation 67
 4.3.1.1 TRMM/TMI 67
 4.3.1.2 NOAA/TOVS 70
 4.3.2 Intraseasonal Variation 72
 4.3.3 Time series analysis 75
4.4 Seasonal variability of SST from TRMM/TMI 76
4.5 Seasonal variability of SWS from TRMM/TMI 78
4.6 TRMM/TMI derived evaporation fields and precipitation over Indian Ocean 80
4.7 Water vapour flux variation over Tropical Indian Ocean from NOAA/TOVS 81
 4.7.1 El-Nino year 81
 4.7.2 Normal year 82
 4.7.3 La-Nina year 83
 4.7.4 Zonal and meridional transport of water vapour flux 85
4.8 Water vapour flux and circulation over Tropical Indian Ocean during contrasting south-west monsoon 87
 4.8.1 Water vapour flux variation 87
 4.8.2 Wind field over Indian Ocean 89
4.9 Conclusion 90
Chapter 5: Intraseasonal oscillation during active and break phase of south west monsoon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Overview</td>
<td>109</td>
</tr>
<tr>
<td>5.2 Intraseasonal variation of water vapour and wind speed over Eastern Arabian Sea</td>
<td>112</td>
</tr>
<tr>
<td>5.2.1 Time series Analysis</td>
<td>112</td>
</tr>
<tr>
<td>5.2.2 Spectrum analysis</td>
<td>113</td>
</tr>
<tr>
<td>5.2.3 Wavelet analysis</td>
<td>114</td>
</tr>
<tr>
<td>5.3 Intraseasonal variation of water vapour and wind speed over North Bay of Bengal</td>
<td>118</td>
</tr>
<tr>
<td>5.3.1 Spectrum analysis</td>
<td>118</td>
</tr>
<tr>
<td>5.3.2 Wavelet analysis</td>
<td>119</td>
</tr>
<tr>
<td>5.4 Lead –lag relationship between TWV and SWS</td>
<td>121</td>
</tr>
<tr>
<td>5.4.1 Over the Eastern Arabian Sea</td>
<td>121</td>
</tr>
<tr>
<td>5.4.2 Over the North Bay of Bengal</td>
<td>122</td>
</tr>
<tr>
<td>5.5 Water vapour and wind speed variation in different tropospheric levels</td>
<td>123</td>
</tr>
<tr>
<td>5.5.1 Water vapour variation</td>
<td>123</td>
</tr>
<tr>
<td>5.5.2 Wind Speed variation</td>
<td>125</td>
</tr>
<tr>
<td>5.6 Composite analysis of TWV during active and break phase of monsoon</td>
<td>126</td>
</tr>
<tr>
<td>5.7 Conclusion</td>
<td>127</td>
</tr>
</tbody>
</table>

Chapter 6: Impact of satellite derived moisture and temperature profile in mesoscale process

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Overview</td>
<td>140</td>
</tr>
<tr>
<td>6.2 Simulation of heavy rainfall events and west-coast trough</td>
<td>142</td>
</tr>
<tr>
<td>6.2.1 Description of model and study area</td>
<td>142</td>
</tr>
<tr>
<td>6.2.2 Mesoscale initial conditions and experiment design</td>
<td>143</td>
</tr>
<tr>
<td>6.2.2.1 Basic initial condition</td>
<td>143</td>
</tr>
<tr>
<td>6.2.2.2 Data improved initial condition</td>
<td>143</td>
</tr>
</tbody>
</table>
Chapter 7 Conclusions and Future Scope

7.1 Summary
7.2 Onset of southwest monsoon
7.3 Evolution of water vapour fields during southwest monsoon
7.4 Intraseasonal oscillation during south west monsoon
7.5 Impact of satellite derived moisture and temperature profile in meso-scale process
7.6 Future work

References
Publication of the Author Related To Thesis Work
Curriculum Vitae