List of Figures

Figure 2.1 Atmospheric transmission
Figure 2.2 Electromagnetic spectrum
Figure 2.3 Special Sensor Microwave Imager (SSM/I) scan geometry
Figure 2.4 Multifrequency Microwave Scanning Radiometer (MSMR) scan geometry.

Figure 3.1 Satellite derived monthly mean Sea surface temperature, (a) January, (b) April, (c) July, and (d) October, during the year 2000

Figure 3.2 Comparison between satellite derived and COADS observed monthly mean sea surface temperature.

Figure 3.3 Same as figure 3.1 except for wind speed
Figure 3.4 Same as figure 3.2 except for wind speed
Figure 3.5 Same as figure 3.1 except for near surface specific humidity
Figure 3.6 Same as figure 3.2 except for near surface specific humidity
Figure 3.7 Same as figure 3.1 except for near surface air temperature
Figure 3.8 Same as figure 3.2 except for near surface air temperature
Figure 3.9 Same as figure 3.1 except for surface minus near surface specific humidity
Figure 3.10 COADS minus satellite derived surface minus near surface specific humidity, (a) January, (b) July, during the year 2000
Figure 3.11 Same as figure 3.1 except for latent heat flux
Figure 3.12 COADS observed latent heat flux, (a) January, (b) April, (c) July, and (d) October, during the year 2000.
Figure 3.13 Same as figure 3.10 except for latent heat flux
Figure 3.14 Comparison between Satellite derived and COADS observed monthly mean latent heat flux, (a) January, and (b) July, during the year 2000

Figure 3.15 Time series of (a) latent heat flux, (b) wind speed, (c) near surface specific humidity, (d) near surface air temperature, over Arabian Sea, during the years 2000-2001
Figure 3.16 Same as figure 3.11 except for sensible heat flux

Figure 3.17 Same as figure 3.12 except for sensible heat flux

Figure 3.18 Direct retrieved latent heat flux, (a) January, (b) April, (c) July, and (d) October, during the year 2000.

Figure 3.19 Comparison between direct retrieved and COADS observed monthly mean latent heat flux during July 2000

Figure 4.1 Satellite derived latent heat flux, (a) January, -(l) December, during the year 2000

Figure 4.2 Same as figure 4.1 except for sensible heat flux

Figure 4.3 Power spectra over Arabian Sea, (a) wind speed, (b) latent heat flux, (c) sensible heat flux

Figure 4.4 Percentage variance of the oscillations accounted for by the 30-50 days time scale, (a) wind speed, (b) sea surface temperature, (c) near surface air temperature, (d) near surface specific humidity, (e) latent heat flux, and (f) sensible heat flux

Figure 4.5 Time series of, (a) wind speed, (b) sea surface temperature, (d) near surface air temperature, (d) near surface specific humidity, (e) latent heat flux, and (d) sensible heat flux, over Arabian Sea

Figure 4.6 History of time filtered (30-50 days) variables: (a) wind speed, (b) sea surface temperature, (d) near surface air temperature, (d) near surface specific humidity, (e) latent heat flux, and (d) sensible heat flux, over Arabian Sea

Figure 4.7 Sensitivity of latent heat flux on the suppression of oscillations in one or another variables, (a) wind speed, (b) sea surface temperature, (c) humidity, (d) air temperature, and (e) wind speed & sea surface temperature, over Arabian Sea

Figure 4.8 Same as figure 4.7 except for sensible heat flux

Figure 4.9 Same as figure 4.5 except for Western Pacific Ocean

Figure 4.10 Same as figure 4.6 except for Western Pacific Ocean

Figure 4.11 Same as figure 4.5 except for Bay of Bengal
Figure 4.12 Same as figure 4.6 except for Bay of Bengal

Figure 4.13 Maximum latent heat flux on 30 -50 days time scale, (a) winter, (b) spring, (c) summer, and (d) autumn, during the year 2000.

Figure 4.14 30-50 days time filtered, (a) precipitation, (b) surface temperature, (c) latent heat flux, (d) sensible heat flux, on 20th June 2000

Figure 4.15 Same as figure 4.14 except for 25th June 2000

Figure 5.1 Observed and simulated cyclone track during 15th –17th October 2001

Figure 5.2 (a) Initial wind field at 850 hpa, valid at 00 GMT of 11th October 2001, (b) 48 hours simulation of wind field at 850 hpa, valid at 00 GMT of 13th October 2001, in control experiment, (c) Satellite observed wind field on 13th October 2001, and (d) model simulated wind field at 850, valid at 00 GMT of 13th October 2001, without QuikSCAT derived wind in initial condition

Figure 5.3 48 hours simulation of wind field at 850 hpa, valid at 00 GMT of 13th October 2001, (a) no latent heat experiment, (b) no surface energy fluxes experiment.

Figure 5.4 (a) initial wind field at 850 hpa valid at 00 GMT of 15th October 2001, (b) 24 hrs simulation of wind field at 850 hpa valid at 00 GMT of 16th October 2001, (c) past 24 hrs accumulated rainfall (mm) valid at 00 GMT 16th October 2001, in control experiment

Figure 5.5(a) longitude-height cross-section of vertical wind (cm/s) in the neighborhoods of cyclone valid at 12 GMT of 16th October, (b) 48 hrs simulation of wind field at 850 hpa valid at 00 GMT of 17th October 2001, (c) past 24 hrs accumulated rainfall (mm) valid at 00 GMT 17th October 2001, in control experiment

Figure 5.6 Temporal variation of (a) Vorticity, (b) pressure, over cyclonic eye, for different experiments

Figure 5.7 (a) 24 hrs simulation of wind field at 850 hpa valid at 00 GMT of 16th October 2001, (b) 48 hrs simulation of wind field at 850 hpa valid at 00 GMT of 17th October 2001, (c) Longitude-height cross-section of vertical wind (cm/s) in neighborhood of cyclone, in no latent heat experiment
Figure 5.8 Past 24 hrs accumulated rainfall (mm), (a) valid at 00 GMT of 16th October 2001, (b) valid at 00 GMT of 17th October 2001, in no latent heat experiment

Figure 5.9 (a) 24 hrs simulation of wind field at 850 hpa valid at 00 GMT of 16th October 2001, (b) Longitude-height cross-section of vertical wind (cm/s) in the neighborhood of cyclone, in no surface energy fluxes experiment