APPENDIX A

LIST OF PUBLICATIONS

Papers in Refereed Journals

• B.K. Dutta and L.K. Arora, “Fractional Elzaki’s Transform”, (Communicated for publication).

• B.K. Dutta, L.K. Arora and N. Saikia, “Generalized Taylor’s like formula for Caputo-type fractional derivative”, (Communicated for publication).

Presentations in Conferences

APPENDIX B

LIST OF SYMBOLS

Sets

\(\mathbb{N} \) natural numbers, \(\mathbb{N} := \{1, 2, 3, \cdots \} \)
\(\mathbb{N}_0 \) counting numbers, \(\mathbb{N}_0 := \{0, 1, 2, \cdots \} \)
\(\mathbb{Z} \) integer numbers, \(\mathbb{Z} = \{ \cdots -2, -1, 0, 1, 2, \cdots \} \)
\(\mathbb{R} \) real numbers
\(\mathbb{C} \) complex numbers, \(\mathbb{C}_0 := \{x + iy : x, y \in \mathbb{R}, i = \sqrt{-1}\} \)
\(\mathcal{C}, \mathcal{C}[a, b] \) set of continuous function
\(\mathcal{C}^n, \mathcal{C}^n[a, b] \) set of function with continuous \(n^{th} \) derivative
\(\mathcal{L}_p, \mathcal{L}_p[a, b] \) Lebesgue space
\(\bar{U} \) closure of the set \(U \)
\(\partial U \) boundary of \(U \)

Functions

\(o, O \) Landau symbols
\(\binom{n}{i} \) Binomial coefficient
\([\cdot] \) Ceiling function; \([x] = \min\{z \in \mathbb{Z} : z \leq x\} \)
\(\Gamma(z) \) Euler’s continuous gamma function
\(E_\alpha(z) \) Mittag-Leffler function in one parameter, \(\alpha \)
APPENDIX B. LIST OF SYMBOLS

\[E_{\alpha,\beta}(z) \] Mittag-Leffler function in two parameters, \(\alpha, \beta \)

\[_2F_1(a, b; c; z) \] Gauss hypergeometric function

\(H \)-function Fox’s \(H \)-function

\(I \)-function Saxena’s multivariable \(I \)-function

Differential and Integral operators

\[:= \quad \text{means that the left side is defined by the right side} \]

\[D^n, \frac{d^n}{dt^n} \quad n^{th} \text{ order derivative, } n \in \mathbb{N} \]

\[J^n \quad n\text{-fold integral, } n \in \mathbb{N} \]

\[T^\alpha_{a+}, D^-\alpha \quad \text{Left-sided Riemann-Liouville integral operator, } \Re(\alpha) > 0 \]

\[D^\alpha \quad \text{Left-sided Riemann-Liouville differential operator, } \Re(\alpha) \geq 0 \]

\[C_D^\alpha \quad \text{Left-sided Caputo’s differential operator, } \Re(\alpha) \geq 0 \]

\[D_x^\alpha f, f^{(\alpha)} \quad \text{Left-sided Modified Riemann-Liouville derivative, } \alpha \in \mathbb{R}_+ \]

\[E_{\alpha,\beta} \quad \text{Left-sided Erdelyi-Kober integral operator, } \alpha(> 0), \beta \in \mathbb{R} \]

\[T^\alpha_{a+}, T^\alpha_{a+} \quad \text{Left-sided Saigo’s integral operator, } \alpha(> 0), \beta, \gamma \in \mathbb{R} \]

\[D^\alpha_{a+}, D^\alpha_{a+} \quad \text{Left-sided RL type Saigo’s differential operator, } \alpha(\geq 0), \beta, \gamma \in \mathbb{R} \]

\[C_D^\alpha_{a+}, C_D^\alpha_{a+} \quad \text{Left-sided Caputo-type differential operator, } \alpha(\geq 0), \beta, \gamma \in \mathbb{R} \]

\[\ast D^\alpha_{a+}, \ast D^\alpha_{a+} \quad \text{Left-sided modified Caputo-type differential operator, } \alpha(\geq 0), \beta, \gamma \in \mathbb{R} \]

Integral Transforms

\[\mathfrak{M} f \quad \text{Mellin transform of the function } f \]

\[\mathcal{L} f \quad \text{Laplace’s transform of the function } f \]

\[\mathfrak{S} f \quad \text{Sumudu transform of function } f \]

\[\mathfrak{E} f \quad \text{Elzaki’s transform of function } f \]

\[\mathcal{L}_\alpha f \quad \text{Fractional Laplace’s transform of function } f \]

\[\mathfrak{S}_\alpha f \quad \text{Fractional Sumudu transform of function } f \]

\[\mathfrak{E}_\alpha f \quad \text{Fractional Elzaki’s transform of function } f \]
APPENDIX C

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Fractional Calculus</td>
</tr>
<tr>
<td>FDE</td>
<td>Fractional Differential Equation</td>
</tr>
<tr>
<td>FIVP</td>
<td>Fractional Initial Value Problem</td>
</tr>
<tr>
<td>BIVP</td>
<td>Fractional Boundary Value Problem</td>
</tr>
<tr>
<td>CTMSO</td>
<td>Caputo type modification of the Saigo’s operator</td>
</tr>
<tr>
<td>DTM</td>
<td>Differential Transform Method</td>
</tr>
<tr>
<td>CTDTM</td>
<td>Caputo Type Differential Transform Method</td>
</tr>
</tbody>
</table>