Publications
PROPERTIES OF SEMIRINGS

T. Vasanthi¹* & C. Venkata Lakshmi²

¹Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003(A.P), India
²Department of Applied Mathematics, Sri Padmavathi Mahila Visva Vidyalyam, Tirupati – 517 502 (A.P), India

(Received on: 24-05-12; Revised & Accepted on: 31-05-13)

ABSTRACT

In this paper, we study the properties of semirings satisfying the identity \(ab + a = a \), for all \(a, b \) in \(S \). We characterize zerosum semirings.

Keywords: Rectangular band; Left (Right) singular; PRD; Mono semiring.

2000 Mathematics Subject Classification: 20M10, 16Y60.

I. INTRODUCTION:

A triple \((S, +, \cdot)\) is called a semiring if \((S, +)\) is a semigroup; \((S, \cdot)\) is semigroup; \(a(b + c) = ab + ac\) and \((b + c)a = ba + ca\) for every \(a, b, c \) in \(S \). A semiring \((S, +, \cdot)\) is said to be a totally ordered semiring if the additive semigroup \((S, +)\) and multiplicative semigroup \((S, \cdot)\) are totally ordered semigroups under the same total order relation. An element \(x \) in a totally ordered semigroup \((S, \cdot)\) is non-negative (non-positive) if \(x^2 \geq x \) (\(x^2 \leq x \)). A totally ordered semigroup \((S, \cdot)\) is said to be non-negatively (non-positively) ordered if every one of its elements is non-negative (non-positive). \((S, \cdot)\) is positively (negatively) ordered in strict sense if \(xy \geq x \) and \(xy \geq y \) (\(xy \leq x \) and \(xy \leq y \)) for every \(x \) and \(y \) in \(S \). A semigroup \((S, +)\) is said to be a band if \(a + a = a \) for all \(a \) in \(S \). A semigroup \((S, +)\) is said to be rectangular band if \(a + b + a = a \) for all \(a, b \) in \(S \). A semigroup \((S, \cdot)\) is said to be a band if \(a.a = a^2 = a \) for all \(a \) in \(S \). A semigroup \((S, \cdot)\) is said to be left (right) singular if \(ab = a \) (\(ab = b \)) for all \(a, b \) in \(S \). A semigroup \((S, +)\) is said to be left (right) singular if \(a + b = a \) (\(a + b = b \)) for all \(a, b \) in \(S \). A semiring \((S, +, \cdot)\) is said to be a rectangular band if \(a + b + a = a \). A semiring \((S, +, \cdot)\) is said to be monosemiring if \(a + b = ab \) for all \(a, b \) in \(S \). A semiring \((S, +, \cdot)\) with additive identity zero which is multiplicative zero is said to be zero square ring if \(x^2 = 0 \) for all \(x \in S \). A semiring \((S, +, \cdot)\) is said to be a Positive Rational Domain (PRD) if and only if \((S, \cdot)\) is an abelian group. A semiring \((S, +, \cdot)\) with additive identity zero is said to be zerosumfree semiring if \(x + x = 0 \) for all \(x \in S \).

Theorem 1: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(ab + a = a \) for all \(a, b \) in \(S \). If \(S \) contains the multiplicative identity \(1 \), then \((S, +)\) is a band.

Proof: Consider \(ab + a = a \) for all \(a, b \) in taking \(b = 1 \)

\[a.1 + a = a \]
\[a + a = a, \text{ for all } a \in S \]

\(\therefore \) \((S, +)\) is a band

Theorem 2: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(ab + a = a \) for all \(a, b \) in \(S \). Let \(S \) contain the multiplicative identity \(1 \) and \((S, +)\) be commutative. Then \((S, \cdot)\) is commutative if \((S, +)\) is not a rectangular band.

Proof: Suppose \((S, +)\) is a rectangular band

Corresponding author: T. Vasanthi¹*

¹Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003(A.P), India

International Journal of Mathematical Archive- 4(6), June – 2013 222
Consider \(ab + a = a \), for all \(a, b \) in \(S \)

\[
\Rightarrow ab + a + ab = a + ab
\]

\[
\Rightarrow a (b + 1 + b) = ab + a \quad (\because (S,+) \text{ is commutative})
\]

\[
\Rightarrow ab = ab + a \quad (\because (S,+) \text{ is a rectangular band})
\]

\[
\Rightarrow ab = a
\]

Now \(ab + a = a \)

Taking \(a = 1 \)

\[
\Rightarrow 1 + b + 1 = 1
\]

\[
\Rightarrow b + 1 = 1, \text{ for all } b \text{ in } S
\]

Also \(ba + b = b \), for all \(a, b \) in \(S \)

\[
\Rightarrow ba + b + ba = b + ba
\]

\[
\Rightarrow b (a + 1 + a) = ba + b \quad (\because (S,+) \text{ is commutative})
\]

\[
\Rightarrow ba = ba + b \quad (\because (S,+) \text{ is a rectangular band})
\]

\[
\Rightarrow ba = b
\]

\[
\therefore ab \neq ba, \text{ which proves the result.}
\]

Also \(ab = a \)

\[
\Rightarrow ab + b = a + b
\]

\[
\Rightarrow (a + 1) b = a + b
\]

\[
\Rightarrow 1. b = a + b \quad (\because \text{from } b + 1 = 1)
\]

\[
\Rightarrow b = a + b = b + a
\]

This is evident from the following example

Example:

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Theorem 3: Let \((S, +, -)\) be a semiring satisfying the identity \(ab + a = a \) for all \(a, b \) in \(S \). Then the following are true.

i) If \((S, -)\) is a band, then \((S, +)\) is a band.

ii) Converse is true if \((S, +)\) is right cancellative.

Proof:

(i) Given \(ab + a = a \) for all \(a, b \) in \(S \)

Taking \(b = a \)

\[
\Rightarrow a.a + a = a
\]

\[
\Rightarrow a^2 + a = a
\]

\[
\Rightarrow a + a = a \quad (\because (S, -) \text{ is a band})
\]
\[a + a = a, \text{ for all } a \in S \]

Hence \((S, +)\) is a band

\textbf{(ii)} To prove that \((S, \cdot)\) is a band

Consider \(ab + a = a\) for all \(a, b \in S\)

Clearly \(a.a + a = a\)

\[a^2 + a = a \]
\[\Rightarrow a^2 + a = a + a \quad (\because \text{\((S, +)\) is a band}) \]
\[\Rightarrow a^2 = a \quad (\because \text{\((S, +)\) is right cancellative}) \]

\[\therefore a^2 = a, \text{ for all } a \in S \]

Hence \((S, \cdot)\) is a band.

\textbf{Theorem 4:} Let \((S, +, \cdot)\) be a semiring satisfying the identity \(ab + a = a\) for all \(a, b \in S\). Let \((S, +)\) be commutative and \((S, \cdot)\) is rectangular band. Then the following are true.

\textbf{i)} \(ab = a\) and \(ba = b\)

\textbf{ii)} \((S, +)\) is a band.

\textbf{Proof:}

\textbf{(i)} Consider \(ab + a = a\) for all \(a, b \in S\) and \(ba + b = b\) for all \(b, a \in S\)

\[\Rightarrow ab = a \ (ba + b) \]
\[\Rightarrow ab = aba + ab \]
\[\Rightarrow ab = a + ab \quad (\because \text{\((S, \cdot)\) is a rectangular band}) \]
\[\Rightarrow ab = ab + a \quad (\because \text{\((S, +)\) is commutative}) \]
\[\Rightarrow ab = a \]

Also \(ba = b \ (ab + a)\)

\[\Rightarrow ba = bab + ba \]
\[\Rightarrow ba = b + ba \quad (\because \text{\((S, \cdot)\) is a rectangular band}) \]
\[\Rightarrow ba = ba + b \quad (\because \text{\((S, +)\) is commutative}) \]
\[\Rightarrow ba = b \]

\[\therefore ab = a \text{ and } ba = b \text{ for all } a, b \in S \]

\textbf{(ii)} Consider \(ab + a = a\) for all \(a, b \in S\)

\[\Rightarrow ab + a = a + a \]
\[\Rightarrow a = a + a \]

\[\therefore (S, +) \text{ is a band} \]

\textbf{Theorem 5:} Let \((S, +, \cdot)\) be a zerosumfree semiring with additive identity 0. Then \(ab + a = a\) for all \(a, b \in S\) if and only if \(ab = 0\).

\textbf{Proof:} Consider \(ab + a = a\) for all \(a, b \in S\)
⇒ \(ab + a + a = a + a \)
⇒ \(ab + 0 = 0 \) (\(\because \) S is a zerosumfree semiring, \(a + a = 0 \))
⇒ \(ab = 0 \)
∴ \(ab = 0 \)

Conversely,
\(ab = 0 \), for all \(a, b \) in \(S \)
⇒ \(ab + a = 0 + a \)
⇒ \(ab + a = a \), for all \(a, b \) in \(S \)
∴ \(ab + a = a \), for all \(a, b \) in \(S \)

Theorem 6: Let \((S, +, \cdot) \) be a zero square semiring, where \(0 \) is the additive identity. If \(S \) satisfies the identity \(ab + a = a \) for all \(a, b \) in \(S \), then \(aba = 0 \) and \(bab = 0 \).

Proof: Consider \(ab + a = a \), for all \(a, b \) in \(S \)
⇒ \(aba + a^2 = a^2 \)
⇒ \(aba + 0 = 0 \) (\(\because \) S is zero square semiring, \(a^2 = 0 \))
⇒ \(aba = 0 \)

Also \(ba + b = b \), for all \(a, b \) in \(S \)
⇒ \(bab + b^2 = b^2 \)
⇒ \(bab + 0 = 0 \) (\(\because \) S is zero square semiring, \(a^2 = 0 \))
⇒ \(bab = 0 \)

Theorem 7: Let \((S, +, \cdot) \) be a semiring satisfying the identity \(ab + a = a \), for all \(a, b \) in \(S \). Let \(S \) contain the multiplicative identity \(1 \) and \((S, \cdot) \) be a left singular, then \((S, +) \) is a right singular semigroup.

Proof: By hypothesis \(ab = a \), for all \(a, b \) in \(S \) (\(\because \) \((S, \cdot) \) is left singular)
⇒ \(ab + b = a + b \)
⇒ \((a + 1) b = a + b \)
⇒ \(1. b = a + b \) (\(\because \) from theorem 2)
⇒ \(b = a + b \)

Also \(ba = b \)
⇒ \(ba + a = b + a \)
⇒ \((b + 1) a = b + a \)
⇒ \(1. a = b + a \) (\(\because \) from theorem 2)
⇒ \(a = b + a \)
∴ \(a + b = b \) and \(b + a = a \), for all \(a, b \) in \(S \)

Hence \((S, +) \) is a right singular semigroup.
Theorem 8: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(ab + a = a\), for all \(a, b\) in \(S\). If \((S, +)\) is a right singular semigroup, then \((S, +)\) is a rectangular band.

Proof: By hypothesis \(a + b = b\), for all \(a, b\) in \(S\) \((\because (S, +)\) is right singular)

\[a + b + a = b + a\]

\[a + b + a = a\], for all \(a, b\) in \(S\), which proves the theorem. \((\because (S, +)\) is a right singular semigroup)

i.e., \((S, +)\) is a rectangular band.

The following is an example for theorem7.

Example:

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\cdot)</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Theorem 9: Let \((S, +, \cdot)\) be a PRD satisfying the identity \(ab + a = a\), for all \(a, b\) in \(S\). Then \(1 + a = a\), for all \(a\) in \(S\).

Proof: Suppose \(ab + a = a\), for all \(a, b\) in \(S\)

\[a a^{-1} + a = a\], for all \(a, a^{-1}\) in \(S\)

\[1 + a = a\]

\[\therefore 1 + a = a\], for all \(a\) in \(S\)

Theorem 10: Let \((S, +, \cdot)\) be a PRD satisfying the identity \(ab + a = a\), for all \(a, b\) in \(S\). If \((S, +)\) is commutative, then the following are true.

(i) \((S, +, \cdot)\) is mono semiring
(ii) \((S, \cdot)\) is a band

Proof: Given that \((S, +)\) is commutative

(i) \(ab = (1 + a)(1 + b)\)

\[ab = 1 + b + a + ab\]

\[\Rightarrow ab = (1 + b) + (a + ab)\]

\[\Rightarrow ab = (1 + b) + (a + ab)\]

\[\Rightarrow ab = (1 + b) + (ab + a)\] \((\because (S, +)\) is commutative)

\[\Rightarrow ab = b + a\] \((\because 1 + b = b \& ab + a = a)\)

\[\Rightarrow ab = a + b\]

\[\therefore ab = a + b\], for all \(a, b\) in \(S\).

In particular \(1 = a a^{-1} = a + a^{-1}\) for all \(a, a^{-1}\) in \(S\)

Hence, \((S, +, \cdot)\) is mono semiring.

(ii) Using theorem 9, \(1 + a = a\), for all \(a\) in \(S\)

\[a (1 + a) = a a\]

\[a + a^2 = a^2\] (1)
Now \(ab + a = a \), for all \(a, b \) in \(S \)

taking \(b = a \),

\[a.a + a = a, \text{ for all } a \text{ in } S \]

\[a^2 + a = a \]

\[a + a^2 = a \quad (\because (S, +) \text{ is commutative}) \quad (2) \]

From (1) and (2), \(a = a^2 \), for all \(a \) in \(S \)

\[\therefore \quad (S, \cdot) \text{ is a band.} \]

Theorem 11: Let \((S, +, \cdot)\) be a totally ordered semiring and satisfying the identity \(ab + a = a \), for all \(a, b \) in \(S \). If \((S, +)\) is p.t.o (n.t.o.) and \((S, \cdot)\) is commutative, then \((S, \cdot)\) is n.t.o. (p.t.o.).

Proof: Let \(ab + a = a \), for all \(a, b \) in \(S \)

\[a = ab + a \geq ab \quad (\therefore (S, +) \text{ is p.t.o.}) \]

\[a \geq ab \]

Suppose \(ab > b \)

\[ab + a \geq b + a \]

\[a \geq b + a \quad (\therefore ab + a = a) \]

\[b + a \leq a \]

Which contradicts the hypothesis that \((S, +)\) is p.t.o.

\[ab \leq b \]

\[\therefore \quad ab \leq a \& \ ab \leq b \]

Hence \((S, \cdot)\) is n.t.o.

Similarly we can prove that \((S, \cdot)\) is p.t.o if \((S, +)\) is n.t.o.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared
STRUCTURE OF SEMIRINGS

T. Vasanthi1* & C. Venkata Lakshmi2

1Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003, (A.P), India

2Department of Applied Mathematics, Sri Padmavathi Mahila Visva Vidyalayam, Tirupati – 517 502, (A.P), India

(Received on: 04-05-13; Revised & Accepted on: 08-07-13)

ABSTRACT

In this paper, we study some properties of semirings and ordered semirings satisfying the identity \(a + ab + a = a \), for all \(a, b \) in \(S \). We characterize zerosum Semirings and zero square Semirings.

Keywords: Rectangular band; Left (Right) singular; PRD; Mono semiring, E – inverse semigroup, Boolean semiring, C - semiring.

2000 Mathematics Subject Classification: 20M10, 16Y60.

1. INTRODUCTION:

A triple \((S, +, \cdot)\) is called a semiring if \((S, +)\) is a semigroup; \((S, \cdot)\) is semigroup; \(a (b + c) = ab + ac\) and \((b + c) a = ba + ca\) for every \(a, b, c \) in \(S \). A semiring \((S, +, \cdot)\) is said to be a totally ordered semiring if the additive semigroup \((S, +)\) and multiplicative semigroup \((S, \cdot)\) are totally ordered semigroups under the same total order relation. An element \(x \) in a totally ordered semigroup \((S, \cdot)\) is non-negative (non-positive) if \(x^2 \geq x \) (\(x^2 \leq x \)). A totally ordered semigroup \((S, \cdot)\) is said to be non-negatively (non-positively) ordered if every one of its elements is non-negative (non-positive). \((S, \cdot)\) is positively (negatively) ordered in strict sense if \(xy \geq x \) and \(xy \geq y \) (\(xy \leq x \) and \(xy \leq y \)) for every \(x \) and \(y \) in \(S \). A semigroup \((S, +)\) is said to be a band if \(a + a = a \) for all \(a \) in \(S \). A semigroup \((S, \cdot)\) is said to be rectangular band if \(a + b + a = a \) for all \(a, b \) in \(S \). A semigroup \((S, +)\) is said to be a band if \(a + a = a \) and \((b + c) a = ba + ca \) for every \(a, b, c \) in \(S \). A semiring \((S, +, \cdot)\) is said to be a totally ordered semiring if the additive semigroup \((S, +)\) and multiplicative semigroup \((S, \cdot)\) are totally ordered semigroups under the same total order relation. A semiring \((S, +, \cdot)\) is said to be non-negativity (non-positivity) ordered if every one of its elements is non-negative (non-positive). \((S, \cdot)\) is positively (negatively) ordered in strict sense if \(xy \geq x \) and \(xy \geq y \) (\(xy \leq x \) and \(xy \leq y \)) for every \(x \) and \(y \) in \(S \). A semiring \((S, +)\) is said to be a band if \(a + a = a \) for all \(a \) in \(S \). A semiring \((S, +, \cdot)\) is said to be a totally ordered semiring if \(a + ab + a = a \), for all \(a, b \) in \(S \).

Theorem 1: Let \((S, +, \cdot)\) be a semiring. If \(S \) contains the multiplicative identity which is also an additive identity, then \((S, +)\) is left singular if and only if \((S, \cdot)\) is left (right) singular. If \(\alpha \neq 0 \) in \(S \), then \(\alpha \cdot \alpha = 0 \). If \(\alpha = 0 \) in \(S \), then \(\alpha \cdot \alpha = \alpha \).

Proof: Let \('e' \) be the multiplicative identity which is also an additive identity.

Assume that \(S \) satisfies the condition \(a + ab + a = a \), for all \(a, b \) in \(S \).

\[
\begin{align*}
\Rightarrow & a + ab + a = a \\
\Rightarrow & a + a = a \\
\Rightarrow & ab + a = a \\
\Rightarrow & a + ab = a \\
\Rightarrow & ab + a = a \\
\Rightarrow & (S, \cdot) \text{ is left singular.}
\end{align*}
\]

Corresponding author: T. Vasanthi1*

1Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003, (A.P), India
Conversely, let \((S, \cdot)\) be a left singular semigroup.

Consider \(a + ab + a = a [e + b] + a\)
\[
= ab + a \\
= a [b + e] \\
= ab \\
= a
\]

Hence, \(S\) satisfies the identity \(a + ab + a = a\), for all \(a, b\) in \(S\).

Definition: An element \(a\) of a semigroup \(S\) is called an E-inverse if there is an element \(x\) in \(S\) such that \(ax + ax = ax\), i.e. \(ax \in E(S)\), where \(E(S)\) is the set of all idempotent elements of \(S\).

\(\rightarrow\) A Semigroup \(S\) is called an E-inverse Semigroup if every element of \(S\) is an E-inverse.

Theorem 2: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \(S\) contains the multiplicative identity which is also an additive identity then \((S, +)\) is E-inverse semigroup.

Proof: Consider \(a + ab + a = a\), for all \(a, b\) in \(S\)
\[
\Rightarrow a + a [b + e] = a \\
\Rightarrow a + ab = a \\
\Rightarrow ab + ab^2 = ab \\
\Rightarrow ab + ab.b = ab \\
\Rightarrow ab + ab = ab \quad (\text{\textasciitilde using theorem 1,} (S, \cdot) \text{ is a left singular}) \\
\therefore (S, +) \text{ is E-inverse semigroup.}
\]

Theorem 3: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \(S\) contains the multiplicative identity which is also an additive identity, then \((S, +, \cdot)\) is a monosemiring and \((S, +)\) is left singular semigroup.

Proof: Assume that \(S\) satisfies the condition \(a + ab + a = a\), for all \(a, b\) in \(S\)

Let \(e\) be the multiplicative identity which is also an additive identity

Given \(a + ab + a = a\), for all \(a, b\) in \(S\)
\[
\Rightarrow a + ab + a + b = a + b \\
\Rightarrow a [e + b] + a + b = a + b \\
\Rightarrow a b + a + b = a + b \\
\Rightarrow a [b + e] + b = a + b \\
\Rightarrow a b + b = a + b \\
\Rightarrow [a + e] b = a + b \\
\Rightarrow a b = a + b \\
\Rightarrow a = ab = a + b \\
\therefore (S, +, \cdot) \text{ is monosemiring and} (S, +) \text{ is left singular semigroup.}
\]

Theorem 4: Let \((S, +, \cdot)\) be a semiring satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \(S\) contains the multiplicative identity which is also an additive identity, then \((S, +)\) is a rectangular band.

Proof: Assume that \(S\) satisfies the condition \(a + ab + a = a\), for all \(a, b\) in \(S\)

Let \(e\) be the multiplicative identity which is also an additive identity

\[
i.e.\ a.e = e.a = a \& a + e = e + a = a.
\]

Given \(a + ab + a = a\), for all \(a, b\) in \(S\)
\[
\Rightarrow a + b + a + ab + a = a + b + a \\
\Rightarrow a + b + a [e + b] + a = a + b + a \\
\Rightarrow a + b + ab + a = a + b + a \\
\Rightarrow a + [e + a] b + a = a + b + a \\
\Rightarrow a + ab + a = a + b + a \\
\Rightarrow a = a + b + a \\
\therefore a + b + a = a \text{ \ for all } a, b \text{ in } S
\]

Hence \((S, +)\) is rectangular band.
Theorem 5: Let $(S, +, \cdot)$ be a semiring satisfying the identity $a + ab + a = a$, for all a, b in S. If S contains the multiplicative identity which is also an additive identity, then

(i) $(S, +)$ is a band

(ii) (S, \cdot) is a band

Proof: Assume that S satisfies the condition $a + ab + a = a$, for all a, b in S.

Let e be the multiplicative identity which is also an additive identity.

(i) Let $a + ab + a = a$, for all a, b in S

$\Rightarrow a[e + b] + a = a$

$\Rightarrow ab + a = a$

$\Rightarrow a + ab + a = a + a$

$\Rightarrow a = a + a$

$\therefore a + a = a$, for all a, in S

Hence $(S, +)$ is band.

(ii) Consider $a + ab + a = a$, for all a, b in S

$\Rightarrow a + ab + a = a$

Taking $b = a$

$\Rightarrow a + a^2 + a = a$

$\Rightarrow a[e + a] + a = a$

$\Rightarrow a^2 + a = a$

$\Rightarrow a[a + e] = a$

$\Rightarrow a^2 = a$

$\therefore a^2 = a$, for all a, in S

Hence (S, \cdot) is band.

Theorem 6: Let $(S, +, \cdot)$ be a zero sum free semiring containing the multiplicative identity which is also an additive identity. Then $a + ab + a = a$, for all a, b in S if and only if $ab = 0$.

Proof: Consider $a + ab + a = a$ for all a, b in S

$\Rightarrow a + ab + a + a = a + a$

$\Rightarrow a + ab + 0 = 0$ ($\because S$ is a zero sum free semiring, $a + a = 0$)

$\Rightarrow a + ab = 0$

$\Rightarrow a[e + b] = 0$

$\Rightarrow ab = 0$

$\therefore ab = 0$

Conversely,

$ab = 0$, for all a, b in S

$\Rightarrow a + ab = a + 0$

$\Rightarrow a + ab = a$, for all a, b in S

$\Rightarrow a[e + b] = a$

$\Rightarrow ab = a$

$\Rightarrow a + ab = a + a$

$\Rightarrow a + ab = 0$

$\Rightarrow a + ab + a = 0 + a$

$\Rightarrow a + ab + a = a$

$\therefore a + ab + a = a$, for all a, b in S.

Theorem 7: Let $(S, +, \cdot)$ be a semiring satisfying the identity $a + ab + a = a$, for all a, b in S. If S contains the multiplicative identity which is also an additive identity and $(S, +)$ is a left cancellative, then S is a zero square semiring.

Proof: Assume that S satisfies the condition $a + ab + a = a$, for all a, b in S.

Let e be the multiplicative identity which is also an additive identity.
Given $a + ab + a = a$, for all a, b in S

Taking $b = a$

\[a + a^2 + a = a \]
\[a + a [a + e] = a \]
\[a + a^2 = a + 0 \]
\[a^2 = 0 \quad (\because (S, +) \text{ is a left cancellative}) \]
\[\therefore a^2 = 0, \text{ for all } a \text{ in } S \]

Hence S is a zero square semiring.

Theorem 8: Let $(S, +, \cdot)$ be a zero square semiring, where 0 is the additive identity. If S satisfies the identity $a + ab + a = a$, for all a, b in S, then $aba = 0$ and $bab = 0$.

Proof: Consider $a + ab + a = a$, for all a, b in S

\[(a + ab + a).a = a.a \]
\[a^2 + aba + a^2 = a^2 \]
\[0 + aba + 0 = 0 \quad (\because S \text{ is zero square semiring, } a^2=0) \]
\[\therefore aba = 0 \]

Also $b + ba + b = b$, for all a, b in S

\[(b + ba + b).b = b.b \]
\[b^2 + bab + b^2 = b^2 \]
\[0 + bab + 0 = 0 \quad (\because S \text{ is zero square semiring, } b^2=0) \]
\[\therefore bab = 0 \]

Theorem 9: Let $(S, +, \cdot)$ be a zero square semiring, where 0 is the additive identity. If S satisfies the identity $a + ab + a = a$, for all a, b in S, then $(S, +)$ is a band.

Proof: Consider $a + ab + a = a$, for all a, b in S.

Taking $b = a$

\[a + a^2 + a = a \]
\[a + 0 + a = a \quad (\because S \text{ is zero square semiring, } a^2=0) \]
\[\therefore (S, +) \text{ is a band.} \]

Theorem 10: Let $(S, +, \cdot)$ be a semiring satisfying the identity $a + ab + a = a$, for all a, b in S. If (S, \cdot) is a right singular, then $(S, +)$ is a rectangular band.

Proof: By hypothesis $ab = b$, for all a, b in S (\because (S, \cdot) is right singular)

Consider $a + ab + a = a$, for all a, b in S

\[a + b + a = a \quad (\because (S, \cdot) \text{ is right singular}) \]
\[\therefore a + b + a = a, \text{ for all } a, b \text{ in } S \]

Hence $(S, +)$ is a rectangular band.

Theorem 11: Let $(S, +, \cdot)$ be a semiring containing the multiplicative identity ‘1’ and $1 + b = 1$, for all b in S. Then S satisfies the identity $a + ab + a = a$, for all a, b in S if and only if $(S, +)$ is a band.

Proof: Consider $a + ab + a = a$, for all a, b in S

\[a [1 + b] + a = a \]
\[a + a = a \quad (\because 1 + b = 1) \]
\[\therefore (S, +) \text{ is a band.} \]

Conversely, $1 + b = 1$, for all b in S

\[a + ab = a \]
\[a + ab + a = a + a \]
\[a + ab + a = a \quad (\because (S, +) \text{ is a band}) \]
\[\therefore a + ab + a = a, \text{ for all } a, b \text{ in } S. \]

© 2013, IJMA. All Rights Reserved
Theorem 12: Let \((S, +, \cdot)\) be a PRD satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). Then \(a + 1 + a = a\), for all \(a\) in \(S\).

Proof: Suppose \(a + ab + a = a\), for all \(a, b\) in \(S\).
\[
\Rightarrow a + a a^{-1} + a = a, \quad \text{for all } a, a^{-1} \text{ in } S \\
\Rightarrow a + 1 + a = a \\
\therefore a + 1 + a = a, \quad \text{for all } a \text{ in } S.
\]

Definition: A Boolean semiring is a semiring in which \(a^2 = a\).

Theorem 13: Every Boolean semiring in which \(a + ab + a = a\), for all \(a, b\) in \(S\), then \(S = \{a, 2a\} \cup \{b, 2b\} \cup \ldots . \)

Proof: Suppose \(a + ab + a = a\), for all \(a, b\) in \(S\).
\[
\text{Taking } b = a \\
\Rightarrow a + a^2 + a = a \\
\Rightarrow 3a = a \\
\Rightarrow 3a + a = a + a \\
\Rightarrow 4a = 2a \\
\Rightarrow 4a + a = 2a + a \\
\Rightarrow 5a = 3a \text{ and so on.}
\]

<table>
<thead>
<tr>
<th>+</th>
<th>a</th>
<th>2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2a</td>
<td>a</td>
</tr>
<tr>
<td>2a</td>
<td>a</td>
<td>2a</td>
</tr>
</tbody>
</table>

Theorem 14: Let \((S, +, \cdot)\) be a totally ordered semiring and satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \((S, +)\) is p.t.o (n.t.o.), then \((S, \cdot)\) is n.t.o. (p.t.o.).

Proof: Let \(a + ab + a = a\), for all \(a, b\) in \(S\).
\[
\Rightarrow a = a + ab + a \geq ab \quad (\therefore (S, +) \text{ is p.t.o.}) \\
\Rightarrow a \geq ab
\]
Suppose \(ab > b\)
\[
\Rightarrow a + ab + a \geq a + b + a \\
\Rightarrow a + ab + a \geq (a + b) + a \geq a + b \\
\Rightarrow a \geq a + b \\
\therefore a + ab + a = a
\]

which contradicts the hypothesis that \((S, +)\) is p.t.o.
\[
\Rightarrow ab \leq b \\
\therefore (S, \cdot) \text{ is n.t.o.}
\]

Similarly we can prove that \((S, \cdot)\) is p.t.o if \((S, +)\) is n.t.o.

Theorem 15: Let \((S, +, \cdot)\) be a totally ordered monosemiring and satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \((S, +)\) is p.t.o then \(a + b = a\).

Proof: Let \(a + ab + a = a\), for all \(a, b\) in \(S\).
\[
\Rightarrow a = a + ab + a \geq ab \quad (\therefore (S, +) \text{ is p.t.o.}) \\
\Rightarrow a \geq ab \\
\Rightarrow a \geq a + b \rightarrow (1) \\
\therefore (S, +, \cdot) \text{ is a mono semiring}
\]
\[
\therefore (S, +) \text{ is p.t.o.}, a + b \geq a \rightarrow (2)
\]

From (1) & (2), \(a + b = a\)
\[
\therefore a + b = a, \text{ for all } a, b \text{ in } S.
\]

Definition: A C – semiring is a semiring in which
(i) \((S, +)\) is a commutative monoid
(ii) \((S, \cdot)\) is a commutative monoid
(iii) \(a(b + c) = ab + ac \quad \text{and} \quad (b + c)a = ba + ca\), for every \(a, b, c\) in \(S\)
(iv) \(a.0 = 0.a = 0\)
(v) \((S, +)\) is a band and \(1\) is the absorbing element of \(+\).
Theorem 16: Let \((S, +, \cdot)\) be a totally ordered \(C\) - semiring and satisfying the identity \(a + ab + a = a\), for all \(a, b\) in \(S\). If \((S, +)\) is p.t.o (n.t.o.), then \((S, \cdot)\) is n.t.o. (p.t.o.).

Proof: Let \(a + ab + a = a\), for all \(a, b\) in \(S\)
\[\Rightarrow a + a (b + b) + a = a\]
\[\Rightarrow ab + a + ab + a = a \quad (\because (S, +) \text{ is p.t.o.})\]
\[\Rightarrow ab + a = a \quad (\because a + ab + a = a)\]
\[\Rightarrow a = ab + a \geq ab\]
\[\Rightarrow a \geq ab\]

Suppose \(ab > b\)
\[\Rightarrow ab + a \geq b + a\]
\[\Rightarrow a \geq b + a \quad (\because ab + a = a)\]
\[\Rightarrow a \geq a + b\]
\[\Rightarrow a + b \leq a\]

Which contradicts the hypothesis that \((S, +)\) is p.t.o.

\[\Rightarrow ab \leq b\]
\[\therefore ab \leq a \text{ & } ab \leq b\]

Hence \((S, \cdot)\) is n.t.o.

Similarly we can prove that \((S, \cdot)\) is p.t.o if \((S, +)\) is n.t.o.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared