<table>
<thead>
<tr>
<th>Fig.No.</th>
<th>Title of Figure</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Structure of Methylene Blue</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>A.niger culture</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>A.niger after 4 days of growth</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Hand pressed A.niger biomass for drying</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>B.S.A calibration chart</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>Absorbance Vs Concentration curve for methylene blue</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>Speed vs Volumetric flow rate of peristaltic pump</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Experimental set up for Fixed bed studies</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of A.niger mass on dye adsorbed. (V,100 ml; Co,200mg/ L; pH,7 ;200 rpm)</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Biosorption kinetics for MB onto A.niger. (V,200ml; M,0.5 g; pH,7; 200rpm)</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Lagergren pseudo-first order kinetics for biosorption of MB onto A.niger(V,200ml; M,0.5 g; pH,7; 200rpm)</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Pseudo-second-order kinetics for biosorption of MB onto A.niger (V,200ml; M,0.5 g; pH,7; 200rpm)</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Weber and Moris intraparticle diffusion plot for the removal of MB from aqueous solution by A.niger</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Freundlich plot for biosorption of MB onto A.niger (V,100;M,0.25g; pH,7; 200rpm)</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>Langmuir isotherm for biosorption of MB onto A.niger (V,100;M,0.25g; pH,7; 200rpm)</td>
<td>79</td>
</tr>
<tr>
<td>4.8</td>
<td>Temkin isotherm for biosorption of MB onto A.niger (V,100;M,0.25g; pH,7; 200rpm)</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>Dubinin-Radushkevich for biosorption of MB onto A.niger (V,100;M,0.25g; pH,7; 200rpm)</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of Equilibrium curve for the sorption of MB onto A.niger at 31°C (V,100ml; M, 0.25g; pH,7; speed,200rpm)</td>
<td>81</td>
</tr>
</tbody>
</table>

4.17 Single stage batch adsorber design for biosorption of MB onto A.niger

4.18 Langmuir isotherm and operating lines with slope value equal to V/M = 0.1L/0.1g

4.19 Plot of q_e vs C_0 for different V/M ratios

4.20 FT-IR spectra of palm tree male flower before MB adsorption.

4.21 FT-IR spectra of palm tree male flower after MB adsorption.

4.22 Effect of initial pH for biosorption of MB onto PTMF (Co, 200 mg/L; V, 100mL; M,0.3g)

4.23 Point zero charge of palm tree male flower.

4.24 Effect of biosorbent mass for biosorption of MB onto PTMF (Co, 200 mg/L; V, 100mL; pH,6; temperature, 30°C)

4.25 Linearized Langmuir isotherm at different temperatures for biosorption onto PTMF (M, 0.3 g; pH, 6; agitation rpm, 150).

4.26 Separation factor R_L for biosorption of MB onto PTMF

4.27 Linearized Freundlich isotherm at different temperatures for biosorption of MB onto PTMF (M, 0.3 g; pH, 6; agitation rpm, 150)

4.28 Linearized Tempkin isotherm at different temperatures for biosorption of MB onto PTMF (M, 0.3 g; pH, 6; agitation rpm, 150).
4.29 Linearized Generalized isotherm at different temperatures for biosorption of MB onto PTMF (M, 0.3 g; pH, 6; agitation rpm, 150).

4.30 Biosorption kinetics for MB onto PTMF (M, 3 g; V, 1 L; pH, 6; agitation rpm, 150).

4.31 Lagergren pseudo-first-order kinetics for biosorption of MB onto PTMF (V, 1 L, pH, 6; agitation rpm, 150).

4.32 Ho pseudo-second-order kinetics for biosorption of MB onto PTMF (V, 1 L, pH, 6; agitation rpm, 150).

4.33 Intra particle diffusion for different initial MB concentrations.

4.34 Plot of ln b versus 1/T for biosorption of MB onto PTMF.

4.35 FTIR of initial ASD sample

4.36 FTIR of ASD after adsorption of MB dye

4.37 Scanning electron image of ASD before MB adsorption

4.38 Scanning electron image of ASD after MB adsorption

4.39 Effect of pH on the adsorption capacity of MB by ASD (T = 303 K, time 6 h, C₀ = 50 mg/L, adsorption mass 1 g/L)

4.40 Effect of pH on the percentage adsorption of MB by ASD (T = 303 K, time 6 h, C₀ = 50 mg/L, adsorption mass 1 g/L)

4.41 Plot of ASD mass on the adsorption capacity of MB (C₀ = 200 mg/L, pH -7)

4.42 Effect of MB dye adsorption by ASD with time (T = 303 K, adsorbent mass 1 g/L)

4.43 Effect of contact time on MB dye removal efficiency using ASD (T = 303 K, adsorbent mass 1 g/L)

4.44 Pseudo-First order plot of MB adsorption onto ASD

4.45 Pseudo-Second order plot of MB adsorption onto ASD

4.46 Weber and Morris intra-particle diffusion plot for the removal of MB by ASD (T = 303 K, m = 1 g/l).

4.47 Plot of R_L Vs C₀ for MB adsorption onto ASD

4.48 Experimental equilibrium data and (a) Langmuir, (b) Freundlich, (c) Temkin, (d) Redlich–Peterson, (e) Dubinin-Radushkevich and (f) predicted isotherms by maximizing R² for the sorption of MB onto ASD.
4.49 Adsorption capacity vs. Temperature (m = 1 g/l, agitation time = 6 hr, pH = 7.0) for adsorption of MB by ASD

4.50 q_e vs. C_e at different temperature for adsorption of MB by ASD. (m = 1 g/l, agitation time = 6 hr, pH = 7.0)

4.51 Van't Hoff’s plot for the adsorption of MB onto ASD.

4.52 Scanning electron image of PTMFAC before MB adsorption

4.53 Scanning electron image of PTMFAC after MB adsorption

4.54 Linearized Langmuir isotherm at different temperatures for adsorption of MB onto PTMFAC (M, 0.1 g; pH, 6; agitation rpm, 150).

4.55 Separation factor R_L for adsorption of MB onto PTMFAC

4.56 Linearized Freundlich isotherm at different temperatures for adsorption of MB onto PTMFAC (M, 0.1 g; pH, 6; agitation rpm, 150)

4.57 Linearized Tempkin isotherm at different temperatures for adsorption of MB onto PTMFAC (M, 0.1 g; pH, 6; agitation rpm, 150).

4.58 Linearized Generalized isotherm at different temperatures for adsorption of MB onto PTMFAC (M, 0.1 g; pH, 6; agitation rpm, 150)

4.59 Adsorption kinetics for MB onto PTMFAC (M, 1 g; V, 1 L; pH, 6; agitation rpm, 150).

4.60 Lagergren pseudo-first-order kinetics for MB onto PTMFAC (V, 1 L, pH, 6; agitation rpm, 150).

4.61 Ho pseudo-second-order kinetics for MB onto PTMFAC (V, 1 L, pH, 6; agitation rpm, 150).

4.62 Plot of In b versus $1/T$ for adsorption of MB onto PTMFAC.

5.1 Breakthrough curves for MB biosorption onto A. niger biomass at different initial concentrations (bed height = 20 cm, flow rate = 5.7 ml/min, pH=6)

5.2 Linearized form of Thomas model for MB biosorption onto A. niger at different initial concentrations (bed height = 20 cm, flow rate = 5.7 ml/min, pH=6)

5.3 Breakthrough curves for MB biosorption onto A. niger at different bed height (C_0=50 mg/L, flow rate = 5.7 ml/min, pH=6)

5.4 Linearized form of Thomas model for methylene blue biosorption onto A. niger biomass at different bed height (C_0= 50 ppm, flow rate = 5.7 ml/min, pH=6)

5.5 Comparison of the experimental and predicted breakthrough curves obtained at 50 mg/L according to the Thomas model for biosorption of MB onto A. niger
5.6 Comparison of the experimental and predicted breakthrough curves obtained at 100 mg/L according to the Thomas model for biosorption of MB onto A. niger.

5.7 Comparison of the experimental and predicted breakthrough curves obtained at 150 ppm according to the Thomas model for biosorption of MB onto A. niger.

5.8 Comparison of the experimental and predicted breakthrough curves obtained at 50 mg/L according to the Adam-Bohart model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.9 Comparison of the experimental and predicted breakthrough curves obtained at 100 mg/L according to the Adam-Bohart model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.10 Comparison of the experimental and predicted breakthrough curves obtained at 150 mg/L according to the Adam-Bohart model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.11 Comparison of the experimental and predicted breakthrough curves obtained at 50 mg/L according to the Adam-Bohart model at 20% concentration for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.12 Comparison of the experimental and predicted breakthrough curves obtained at 100 mg/L according to the Adam-Bohart model at 30% concentration for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.13 Comparison of the experimental and predicted breakthrough curves obtained at 150 mg/L according to the Adam-Bohart model at 30% concentration for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.14 Comparison of the experimental and predicted breakthrough curves obtained at 50 mg/L according to the Yoon-Nelson model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.15 Comparison of the experimental and predicted breakthrough curves obtained at 100 mg/L according to the Yoon-Nelson model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.16 Comparison of the experimental and predicted breakthrough curves obtained at 150 mg/L according to the Yoon-Nelson model for biosorption of MB onto A. niger (Flow rate=5.7 min/ml, bed height =20 cm).

5.17 Iso-removal lines for 0.2, 0.4 and 0.6 breakthrough for different bed height for biosorption of MB onto A. niger (C_o=50 ppm, flow rate = 5.7 ml/min).

5.18 Breakthrough curves for methylene blue Adsorption onto PTMF at different bed height (C_o= 50 mg/L, flow rate = 7.5 ml/min, pH=6).

5.19 Breakthrough curves for methylene blue Adsorption onto PTMF at different initial concentrations (bed height= 8 cm, flow rate = 7.5 ml/min, pH=6).
5.20 Breakthrough curves for methylene blue Adsorption onto PTMF at different flow rate (initial concentrations =100 mg/L, bed height= 8cm, pH=6)

5.21 Thomas model parameters at bed height, 5 cm using non-linear regression for adsorption of MB onto PTMF (C_o= 50 ppm, flow rate = 7.5 ml/min, pH=6)

5.22 Thomas model parameters at bed height, 8 cm using non-linear regression for adsorption of MB onto PTMF (C_o= 50 mg/L, flow rate = 7.5 ml/min, pH=6)

5.23 Thomas model parameters at bed height, 10 cm using non-linear regression for adsorption of MB onto PTMF (C_o= 50 ppm, flow rate = 7.5 ml/min, pH=6)

5.24 Thomas model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5 ml/min, pH=6)

5.25 Thomas model parameters at initial concentration of 150 mg/L using non-linear regression for adsorption of MB onto PTMF (bed height= 8cm, flow rate = 7.5 ml/min, pH=6)

5.26 Thomas model parameters at flow rate of 4.8 mL/min using non-linear regression for adsorption of MB onto PTMF (C_o= 100 mg/L, bed height= 8cm, pH=6)

5.27 Thomas model parameters at flow rate of 10.6 mL/min using non-linear regression (C_o= 100 mg/L, bed height= 8cm, pH=6)

5.28 Yoon-Nelson model parameters at bed height of 5 cm using non-linear regression for adsorption of MB onto PTMF (C_o= 50 mg/L, flow rate = 7.5 ml/min, pH=6)

5.29 Yoon-Nelson model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMF (C_o= 50mg/L, flow rate = 7.5 ml/min, pH=6)

5.30 Yoon-Nelson model parameters at bed height of 10 cm using non-linear regression for adsorption of MB onto PTMF (C_o = 50 mg/L, flow rate = 7.5 ml/min, pH=6)

5.31 Yoon-Nelson model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5ml/min, pH=6)

5.32 Yoon-Nelson model parameters at initial concentration of 150 mg/L using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5ml/min, pH=6)

5.33 Yoon-Nelson model parameters at flow rate of 4.6 ml/min using non-linear regression for adsorption of MB onto PTMF (C_o = 100 mg/L, bed height= 8cm, pH=6)

5.34 Yoon-Nelson model parameters at flow rate of 10.6 ml/min using non-linear regression for adsorption of MB onto PTMF (C_o = 100 mg/L, bed height= 8cm, pH=6)
5.35 Adam-Bohart model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMF \((C_0 = 50 \text{ ppm}, \text{ flow rate} = 7.5 \text{ ml/min}, \text{ pH}=6)\) 172

5.36 Adam-Bohart model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMF (bed height=8 cm , flow rate = 7.5 ml/min, pH=6) 173

5.37 Breakthrough curves for methylene blue Adsorption onto PTMFAC at different bed height (initial concentrations= 50 mg/L, flow rate = 7.5 ml/min, pH=6) 175

5.38 Breakthrough curves for methylene blue Adsorption onto PTMFAC at different initial concentrations (bed height= 8cm, flow rate = 7.5 ml/min, pH=6) 176

5.39 Breakthrough curves for methylene blue Adsorption onto PTMFAC at different flow rate (initial concentrations =100 mg/L , bed height= 8cm, pH=6) 177

5.40 Thomas model parameters at bed height of 5cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 50 ppm , flow rate = 7.5 ml/min, pH=6) 179

5.41 Thomas model parameters at bed height of 8cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 50 ppm , flow rate = 7.5 ml/min, pH=6) 179

5.42 Thomas model parameters at bed height of 10 cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 50 ppm , flow rate = 7.5 ml/min, pH=6) 180

5.43 Thomas model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMFAC.(bed height =8cm, flow rate = 7.5ml/min, pH=6) 180

5.44 Thomson model parameters at flow rate of 4.8 ml/min using non-linear regression for adsorption of MB onto PTMFAC (concentration= 100 ppm , bed height= 8cm, pH=6) 181

5.45 Yoon-Nelson model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMFAC (concentration= 50 ppm , flow rate = 7.5 ml/min, pH=6) 183

5.46 Yoon-Nelson model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMFAC (bed height= 8cm , flow rate = 7.5 ml/min, pH=6) 183

5.47 Yoon-Nelson model parameters at flow rate of 4.8 ml/ min using non-linear regression for adsorption of MB onto PTMFAC (concentration= 100 ppm , bed height= 8cm, pH=6) 184

5.48 Adam-Bohart model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMFAC (concentration= 50 ppm , flow rate = 7.5 ml/min, pH=6) 186
5.49 Adam-Bohart model parameters at initial concentration of 100 mg/L using non-linear regression for adsorption of MB onto PTMFAC (concentration= 100 ppm, bed height= 8cm, pH=6)

5.50 a) Effect of Bed Height, b) Effect of flow rate, c) Effect of influent MB concentration on breakthrough curve for ASD.

5.51 Comparison of fitted curves and experimental data. for adsorption of MB onto ASD (C_0 = 100 mg/L, F = 6.5 mL/min, Z = 6 cm)

5.52 Comparison of fitted curves and experimental data. for adsorption of MB onto ASD (C_0 = 100 mg/L, F = 8.5 mL/min, Z = 6 cm)

5.53 Comparison of fitted curves and experimental data. for adsorption of MB onto ASD (C_0 = 100 mg/L, F = 10.5 mL/min, Z = 6 cm)

6.1 Variation of dimensionless bulk concentration of MB with time for initial bulk concentration of 50 mg/L

6.2 Variation of dimensionless bulk concentration of MB with time for initial bulk concentration of 100 mg/L

6.3 Variation of dimensionless bulk concentration of MB with time for initial bulk concentration of 150 mg/L

6.4 Variation of dimensionless bulk concentration of MB with time for initial bulk concentration of 200 mg/L

6.5 Variation of dimensionless bulk concentration of MB with time for initial bulk concentration of 50 mg/L, b)100 mg/L c) 150 mg/L d) 200 mg/L

6.6 Comparison of the experimental and predicted concentration of MB for a bed height of 5cm. (initial concentration = 50 mg/L, flow rate= 7.5 ml/ min, pH= 6)

6.7 Comparison of the experimental and predicted concentration of MB for a bed height of 8 cm (initial concentration = 50 mg/L, flow rate= 7.5 ml/ min, pH= 6)

6.8 Comparison of the experimental and predicted concentration of MB for a initial concentration of 100 mg/L. (bed height = 8 cm, flow rate= 7.5 ml/ min, pH= 6)

6.9 Comparison of the experimental and predicted concentration of MB for a flow rate of 10.6 ml/min. (bed height = 8 cm, concentration =100 mg/L , pH= 6)

6.10 Comparison of the experimental and predicted concentration of MB for a bed height of 5cm (initial concentration = 50 mg/L, flow rate= 7.5 ml/ min, pH= 6)

6.11 Comparison of the experimental and predicted concentration of MB for a bed height of 8 cm. (initial concentration = 50 mg/L, flow rate= 7.5 mL/ min, pH= 6)

6.12 Comparison of the experimental and predicted concentration of MB for a flow rate of 10.6 mL /min bed height = 8 cm, concentration =100 mg/L , pH= 6)
6.13 Comparison of the experimental and predicted concentration of MB for an initial concentration of 100 mg/L. (bed height = 8 cm, flow rate= 7.5 ml/min, pH= 6)