APPENDICES

Outline

i. Analysis of Data
ii. Tool
 (i) Sociogenic Need-satisfaction Scale.
ANALYSIS OF DATA

"F" test analysis
"t" test analysis
ANOVA TEST 4.1.
Two way analysis of variance of sociogenic Need satisfaction

<table>
<thead>
<tr>
<th>IHD 25.35y</th>
<th>Normal 25-35y</th>
<th>IHD 45-55y</th>
<th>Normals 45-55y</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>56</td>
<td>3136</td>
<td>60</td>
<td>3000</td>
</tr>
<tr>
<td>68</td>
<td>4624</td>
<td>78</td>
<td>6094</td>
</tr>
<tr>
<td>45</td>
<td>2025</td>
<td>54</td>
<td>2916</td>
</tr>
<tr>
<td>81</td>
<td>6561</td>
<td>69</td>
<td>4761</td>
</tr>
<tr>
<td>54</td>
<td>2916</td>
<td>78</td>
<td>6084</td>
</tr>
<tr>
<td>50</td>
<td>2500</td>
<td>62</td>
<td>3844</td>
</tr>
<tr>
<td>67</td>
<td>4489</td>
<td>80</td>
<td>6400</td>
</tr>
<tr>
<td>37</td>
<td>1369</td>
<td>68</td>
<td>4624</td>
</tr>
<tr>
<td>56</td>
<td>3136</td>
<td>70</td>
<td>4900</td>
</tr>
<tr>
<td>73</td>
<td>5329</td>
<td>62</td>
<td>3844</td>
</tr>
<tr>
<td>56</td>
<td>3136</td>
<td>60</td>
<td>3600</td>
</tr>
<tr>
<td>64</td>
<td>4096</td>
<td>59</td>
<td>3481</td>
</tr>
<tr>
<td>71</td>
<td>5041</td>
<td>66</td>
<td>4356</td>
</tr>
<tr>
<td>70</td>
<td>4900</td>
<td>75</td>
<td>5625</td>
</tr>
<tr>
<td>70</td>
<td>4900</td>
<td>67</td>
<td>4489</td>
</tr>
<tr>
<td>46</td>
<td>2116</td>
<td>88</td>
<td>7744</td>
</tr>
<tr>
<td>67</td>
<td>4489</td>
<td>64</td>
<td>4096</td>
</tr>
<tr>
<td>90</td>
<td>8100</td>
<td>52</td>
<td>2704</td>
</tr>
<tr>
<td>68</td>
<td>4624</td>
<td>69</td>
<td>4761</td>
</tr>
<tr>
<td>60</td>
<td>3600</td>
<td>56</td>
<td>3136</td>
</tr>
<tr>
<td>77</td>
<td>5929</td>
<td>72</td>
<td>5184</td>
</tr>
<tr>
<td>78</td>
<td>6084</td>
<td>66</td>
<td>4356</td>
</tr>
<tr>
<td>74</td>
<td>5476</td>
<td>66</td>
<td>4356</td>
</tr>
<tr>
<td>60</td>
<td>3600</td>
<td>73</td>
<td>5329</td>
</tr>
<tr>
<td>72</td>
<td>5184</td>
<td>70</td>
<td>4900</td>
</tr>
</tbody>
</table>

\[M = 64.40 \quad 67.36 \quad 67.68 \quad 64.80 \]

\[\text{Sums} \quad 1610 \quad 1684 \quad 1692 \quad 1620 \]

Group-I = IHD patients of 25-35 yrs. age.
Group-II=Normals groups of 25-35 yrs. age.
Group-III=IHD patients of 45-55 yrs. age.
Group-IV=Normal group of 45-55 yrs. age.
Step-I.

\[C = \frac{(\text{Grand sum})^2}{N} \]

whereas:

- \(C \) = correction term.
- \(N \) = Number of subjects.
- Grand sum = \(\xi x_1 + \xi x_2 + \xi x_3 + \xi x_4 \)
- \(x_1 \) = Total score of Group-I
- \(x_2 \) = Total score of Group II, and so on.

By substitution:

\[C = \frac{(6606)^2}{100} = 436392.36 \]

Step-II.

Total sum of the squares (TSS)

\[\text{TSS} = (\xi x_1^2 + \xi x_2^2 + \xi x_3^2 + \xi x_4^2) - C \]

whereas:

- \(\text{TSS} \) = Total sum of the squares
- \(x_i^2 \) = sum of the squares.

By substitution:

\[\text{TSS} = (107360+115174+116964+106914)-436392.36 \]

\[\text{TSS} = 10019.64 \]

Step-III.

Sum of the squares between the groups.

overall

\[\text{SSB} = \frac{(\xi x_1)^2}{n} + \frac{(\xi x_2)^2}{n} + \frac{(\xi x_3)^3}{n} + \frac{(\xi x_4)^2}{n} - C \]
where

\[SSB = \text{Sum of the squares between the groups.} \]
\[x = \text{Total scores of the group.} \]
\[N = \text{Number of the subjects.} \]

By substitution:

\[
SSB = \left(\frac{1610}{25} \right)^2 + \left(\frac{1684}{25} \right)^2 + \left(\frac{1692}{25} \right)^2 + \left(\frac{1620}{25} \right)^2 - 436392.36
\]

overall \(SSB = 216.44 \)

Step-IV.

Sum of the squares within the groups

\[SSW = TSS - SSB \text{ (overall)} \]
\[SSW = 10019.64 - 216.44 \]
\[SSW = 980.32 \]

Since in the present factorial we have two independent variables, we will have to calculate the SSB separately for each independent variable.

Step-V.

Sum of the squares between the groups of 1st variable i.e. CHD.

\[
SSB \text{ (1st variable) } \left(\frac{\sum x_1 + \sum x_3}{n_1 + n_3} \right)^2 + \left(\frac{\sum x_2 + \sum x_4}{n_2 + n_4} \right)^2 - C
\]

where:

\[SSB = \text{sum of squares between the groups.} \]
\[x = \text{Total scores of group} \]
\[N = \text{Number of subjects} \]
By substitution:

\[
SSB = \frac{(1610+1692)^2}{25+25} + \frac{(1684+1620)^2}{25+25} - 436392.36
\]

SSB (1st variable) = .04

SSB (2nd variable, age) = \[
\frac{(\bar{x}_1 + \bar{x}_2)^2}{n_1+n_2} + \frac{(\bar{x}_3 + \bar{x}_4)^2}{25+25} - C
\]

where

\[
SSB = \text{sum of squares between the groups}
\]
\[
x = \text{Total scores og roup}
\]
\[
N = \text{Number of groups}.
\]

By substitution:

\[
SSB = \frac{(1610+1684)^2}{25+25} + \frac{(1692+1620)^2}{25+25} - 436392.36
\]

SSB (2nd variable) = 3.24

We know that over all SSB was 3 parts, i.e.

SSB(v_1)+SSB(v_2)+interaction SS

Interaction SS=SSB(overall)−SSB(v_1)−SS_B(v_2)

where

\[
SSB = \text{sum of the squares of between the groups}
\]

By substitution:

Interaction SS=216.44-.04−3.24 = 213.16
ANOVA SUMMARY (C .5)

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>sum of squares</th>
<th>Mean square variance</th>
<th>F value</th>
<th>1-s*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between IHC (K-1)</td>
<td>(K-1)</td>
<td>K=no.of grps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between age (K-1)</td>
<td>(K-1)</td>
<td>K=no.of grps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction (IHD range) (df. & df)</td>
<td>3x3=9</td>
<td>213.16</td>
<td>23.68</td>
<td>.231</td>
<td>ns</td>
</tr>
<tr>
<td>Within groups (N-K)</td>
<td>(N-K)</td>
<td>N=No. of grps.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By substitution

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df.</th>
<th>Sum of squares</th>
<th>Mean square variance</th>
<th>F value</th>
<th>1-s*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between IHD</td>
<td>4-1=3</td>
<td>.04</td>
<td>.013</td>
<td>.010</td>
<td>ns</td>
</tr>
<tr>
<td>Between age</td>
<td>4-1=3</td>
<td>3.24</td>
<td>1.08</td>
<td>.0012</td>
<td>ns</td>
</tr>
<tr>
<td>Interaction (IHD x age) within groups</td>
<td>3x3=9</td>
<td>213.16</td>
<td>23.68</td>
<td>.231</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>100-4=96</td>
<td>980.32</td>
<td>102.116</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level of significance.
ANOVA TEST 4.2.

Two way analysis of variance of sociogenic need-experiences

<table>
<thead>
<tr>
<th>IHD 25-35years I</th>
<th>Normals 25-35years II</th>
<th>IHD 45-55 years III</th>
<th>Normal 45-55 years III</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 2601</td>
<td>19 361</td>
<td>31 961</td>
<td>47 2209</td>
</tr>
<tr>
<td>47 2209</td>
<td>57 3249</td>
<td>37 1369</td>
<td>54 2916</td>
</tr>
<tr>
<td>92 8464</td>
<td>46 2116</td>
<td>57 3249</td>
<td>52 2704</td>
</tr>
<tr>
<td>49 2401</td>
<td>55 3025</td>
<td>36 1296</td>
<td>45 2025</td>
</tr>
<tr>
<td>35 1225</td>
<td>34 1156</td>
<td>42 1764</td>
<td>35 1225</td>
</tr>
<tr>
<td>43 1849</td>
<td>29 841</td>
<td>67 4489</td>
<td>20 400</td>
</tr>
<tr>
<td>44 1936</td>
<td>71 5641</td>
<td>40 1600</td>
<td>56 3136</td>
</tr>
<tr>
<td>84 7056</td>
<td>42 1764</td>
<td>43 1849</td>
<td>23 529</td>
</tr>
<tr>
<td>48 2304</td>
<td>43 1849</td>
<td>45 2025</td>
<td>55 3025</td>
</tr>
<tr>
<td>46 2116</td>
<td>27 729</td>
<td>33 1089</td>
<td>28 784</td>
</tr>
<tr>
<td>53 2809</td>
<td>33 1089</td>
<td>38 1444</td>
<td>23 529</td>
</tr>
<tr>
<td>52 2704</td>
<td>54 2916</td>
<td>29 841</td>
<td>37 1369</td>
</tr>
<tr>
<td>45 2025</td>
<td>49 2401</td>
<td>34 1156</td>
<td>391 521</td>
</tr>
<tr>
<td>38 1444</td>
<td>46 2116</td>
<td>37 1369</td>
<td>56 3136</td>
</tr>
<tr>
<td>57 3249</td>
<td>45 2025</td>
<td>29 841</td>
<td>42 1764</td>
</tr>
<tr>
<td>58 3364</td>
<td>43 1849</td>
<td>36 1296</td>
<td>44 1936</td>
</tr>
<tr>
<td>38 1444</td>
<td>43 1849</td>
<td>51 26 1</td>
<td>61 3721</td>
</tr>
<tr>
<td>64 4096</td>
<td>51 2601</td>
<td>43 1849</td>
<td>45 2025</td>
</tr>
<tr>
<td>57 3249</td>
<td>27 729</td>
<td>40 1600</td>
<td>47 2209</td>
</tr>
<tr>
<td>51 2601</td>
<td>40 1600</td>
<td>35 1225</td>
<td>60 3600</td>
</tr>
<tr>
<td>43 1849</td>
<td>65 4225</td>
<td>31 961</td>
<td>49 2401</td>
</tr>
<tr>
<td>45 2025</td>
<td>43 1849</td>
<td>42 1764</td>
<td>35 1225</td>
</tr>
<tr>
<td>46 2116</td>
<td>28 784</td>
<td>45 2025</td>
<td>41 1681</td>
</tr>
<tr>
<td>40 1600</td>
<td>34 1156</td>
<td>40 1600</td>
<td>40 1600</td>
</tr>
<tr>
<td>34 1156</td>
<td>30 900</td>
<td>75 5625</td>
<td>37 1369</td>
</tr>
</tbody>
</table>

M = 5040 42.16 41.44 42.84
Sums 1260 1056 10.36 1071
Step-I.

\[C = \frac{(\text{Grand sum})^2}{N} \]

whereas:

- \(C \) = correction term.
- \(N \) = Number of subjects.
- Grand sum = \(\sum x_1 + \sum x_2 + \sum x_3 + \sum x_4 \)
- \(x_1 \) = Total scores of Group I.
- \(x_2 \) = Total scores of Group II and so on.

By substitution:

\[C = \frac{(14421)^2}{100} \]

\[= 195452.41 \]

Step-II.

Total sum of the square (TSS)

\[\text{TSS} = (\sum x_1^2 + \sum x_2^2 + \sum x_3^2 + \sum x_4^2) - C \]

Whereas:

- \(\text{TSS} \) = Total sum of the squares
- \(x^2 \) = Sum of the square.

By substitution:

\[\text{TSS} = (67892+48220+45888+49039)-195452.41 \]

\[= 15586.59 \]

Step-III.

Sum of the squares between the groups

\[\text{poverall SSB} = \frac{(\sum x_1)^2}{N} + \frac{(\sum x_2)^2}{N} + \frac{(\sum x_3)^2}{N} + \frac{(\sum x_4)^2}{N} - C \]
SSB (IInd variable, i.e. age) = \frac{(\sum x_1 + \sum x_2)^2}{n_1 + n_2} + \frac{(\sum x_3 + \sum x_4)^2}{n_3 + n_4} - c

By substitution:

\[
\frac{\left(1260 + 1054\right)^2}{50} + \frac{\left(1036 + 1071\right)^2}{50} - 195452.41
\]

SSB (IInd variable) = 428.49

where:

- SSB = sum of squares between the group
- x = Total scores of group.
- N = Number of subjects.

We know that over all SSB has 3 parts i.e.

SSB (v_1) + SSB (v_2) + interaction SS.

Interaction SS = SSB (overall) - SSB(v_1) - SSB (v_2)

where:

- SSB = sum of squares between the groups.

By substitution:

\[
= 1301.71 - 292.41 - 428.49
\]

\[= 580.81\]

Anova summary (F .05) = 580.81

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>DF</th>
<th>sum of squares</th>
<th>Mean square variance</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between HD</td>
<td>(K-1)</td>
<td>K= no.of gps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between age</td>
<td>(K-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction IHDxage</td>
<td>(df_1 \times df_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within group</td>
<td>(N-K)</td>
<td>N=Total no. of S.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
By substitution

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>sum of square</th>
<th>Mean square variance</th>
<th>F value</th>
<th>L.s*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between IHD</td>
<td>4-1=3</td>
<td>292.41</td>
<td>97.47</td>
<td>.655</td>
<td>n.s.</td>
</tr>
<tr>
<td>Between age</td>
<td>4-1=3</td>
<td>428.49</td>
<td>142.83</td>
<td>.950</td>
<td>n.s.</td>
</tr>
<tr>
<td>Interaction (IHDxage)</td>
<td>3x3=9</td>
<td>580.81</td>
<td>64.53</td>
<td>.433</td>
<td>n.s.</td>
</tr>
<tr>
<td>within group</td>
<td>100-4=96</td>
<td>142.84.88</td>
<td>148.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Level of significance.

By substitution:

\[\text{SSB} = \frac{(1260)^2}{25} + \frac{(1054)^2}{25} + \frac{(1036)^2}{25} + \frac{(1071)^2}{25} - 195452.41 \]

overall SSB = 1301.71

Step-IV.

Sum of the squares with in groups.

\[\text{SSW} = \text{TSS-SSB (overall)} \]

\[\text{SSW} = 15586.89-1301.71 \]

\[\text{SSW} = 14284.88 \]

Since in the present factorial the have two independent variables, we will have to calculate the SSB separately for each independent variable.

Step-V.

Sum of the squares between the groups of first variable, that is IHD
SSB = (B variable, CHD) =

\[
\frac{(x_1 + x_3)^2}{n_1 + n_3} + \frac{(x_2 + x_4)^2}{n_2 + n_4} - c
\]

where

SSB = sum of square between the groups.

\(x^2\) = Total scores of group.

\(n\) = Number of subjects.

By substitution:

\[
SSB = \frac{(1262 + 1036)^2}{25 + 25} + \frac{(1054 + 1071)^2}{25 + 25}
\]

\((B\ \text{variable})\ SSB = 292.41\)

CHD
Table: Showing raw scores, means, deviation of each scores from its x and x^2 of SNS-Scores in 't' test. Sociogenic need-satisfaction.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>8.4</td>
<td>70.56</td>
<td>60</td>
<td>7.36</td>
<td>54.16</td>
<td>47</td>
<td>20.68</td>
<td>427.60</td>
<td>70</td>
<td>-5.2</td>
<td>27.04</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>-3.6</td>
<td>12.96</td>
<td>78</td>
<td>-10.64</td>
<td>113.20</td>
<td>53</td>
<td>14.68</td>
<td>215.50</td>
<td>60</td>
<td>4.8</td>
<td>23.04</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>19.4</td>
<td>376.36</td>
<td>54</td>
<td>13.36</td>
<td>178.48</td>
<td>68</td>
<td>-3.2</td>
<td>1.02</td>
<td>55</td>
<td>9.8</td>
<td>96.04</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>-16.6</td>
<td>275.56</td>
<td>69</td>
<td>-1.64</td>
<td>2.68</td>
<td>74</td>
<td>-6.32</td>
<td>39.94</td>
<td>68</td>
<td>-3.2</td>
<td>10.24</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>10.4</td>
<td>108.16</td>
<td>78</td>
<td>-10.64</td>
<td>113.20</td>
<td>58</td>
<td>9.68</td>
<td>93.70</td>
<td>68</td>
<td>-3.2</td>
<td>10.24</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>14.4</td>
<td>207.36</td>
<td>62</td>
<td>5.36</td>
<td>28.72</td>
<td>82</td>
<td>-14.32</td>
<td>205.06</td>
<td>56</td>
<td>8.8</td>
<td>77.44</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>-2.6</td>
<td>6.76</td>
<td>80</td>
<td>-12.64</td>
<td>159.76</td>
<td>58</td>
<td>9.68</td>
<td>93.70</td>
<td>71</td>
<td>-6.2</td>
<td>38.44</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>27.4</td>
<td>750.76</td>
<td>68</td>
<td>-1.64</td>
<td>2.68</td>
<td>69</td>
<td>-1.32</td>
<td>1.74</td>
<td>65</td>
<td>-2</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>8.4</td>
<td>70.56</td>
<td>70</td>
<td>2.64</td>
<td>6.96</td>
<td>50</td>
<td>17.68</td>
<td>312.58</td>
<td>76</td>
<td>-11.2</td>
<td>125.44</td>
</tr>
<tr>
<td>10</td>
<td>73</td>
<td>-8.6</td>
<td>75.96</td>
<td>62</td>
<td>5.36</td>
<td>28.72</td>
<td>70</td>
<td>-2.32</td>
<td>5.38</td>
<td>63</td>
<td>1.8</td>
<td>3.24</td>
</tr>
<tr>
<td>11</td>
<td>56</td>
<td>8.4</td>
<td>70.56</td>
<td>60</td>
<td>7.36</td>
<td>54.16</td>
<td>67</td>
<td>6.8</td>
<td>46.2</td>
<td>38</td>
<td>26.8</td>
<td>718.24</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>.4</td>
<td>.16</td>
<td>59</td>
<td>8.36</td>
<td>69.88</td>
<td>75</td>
<td>-7.32</td>
<td>53.58</td>
<td>74</td>
<td>-9.2</td>
<td>84.64</td>
</tr>
<tr>
<td>13</td>
<td>71</td>
<td>-6.6</td>
<td>45.50</td>
<td>66</td>
<td>1.36</td>
<td>1.84</td>
<td>66</td>
<td>1.68</td>
<td>2.82</td>
<td>65</td>
<td>-2</td>
<td>.04</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>-5.6</td>
<td>31.36</td>
<td>75</td>
<td>-7.64</td>
<td>58.36</td>
<td>80</td>
<td>-12.32</td>
<td>151.78</td>
<td>62</td>
<td>2.8</td>
<td>7.84</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>-5.6</td>
<td>31.36</td>
<td>67</td>
<td>.36</td>
<td>.129</td>
<td>62</td>
<td>5.68</td>
<td>32.26</td>
<td>62</td>
<td>2.8</td>
<td>7.84</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>18.4</td>
<td>338.50</td>
<td>88</td>
<td>-20.64</td>
<td>426.00</td>
<td>60</td>
<td>7.68</td>
<td>58.98</td>
<td>80</td>
<td>-15.2</td>
<td>231.64</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>-2.6</td>
<td>6.76</td>
<td>64</td>
<td>3.36</td>
<td>11.28</td>
<td>71</td>
<td>-3.32</td>
<td>11.02</td>
<td>74</td>
<td>-9.2</td>
<td>84.64</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
<td>-25.6</td>
<td>6.55.36</td>
<td>52</td>
<td>15.36</td>
<td>235.92</td>
<td>71</td>
<td>-3.32</td>
<td>11.02</td>
<td>62</td>
<td>2.8</td>
<td>7.84</td>
</tr>
<tr>
<td>19</td>
<td>68</td>
<td>-3.6</td>
<td>12.96</td>
<td>69</td>
<td>-1.64</td>
<td>2.68</td>
<td>81</td>
<td>-13.32</td>
<td>177.42</td>
<td>67</td>
<td>2.2</td>
<td>4.84</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>4.4</td>
<td>24.36</td>
<td>56</td>
<td>11.36</td>
<td>129.04</td>
<td>58</td>
<td>9.68</td>
<td>93.70</td>
<td>64</td>
<td>.8</td>
<td>.64</td>
</tr>
<tr>
<td>21</td>
<td>77</td>
<td>-12.6</td>
<td>158.76</td>
<td>72</td>
<td>-4.64</td>
<td>21.52</td>
<td>70</td>
<td>-2.32</td>
<td>5.38</td>
<td>75</td>
<td>-10.2</td>
<td>1-4.04</td>
</tr>
<tr>
<td>22</td>
<td>78</td>
<td>-13.6</td>
<td>184.96</td>
<td>66</td>
<td>1.36</td>
<td>1.84</td>
<td>67</td>
<td>.68</td>
<td>.462</td>
<td>66</td>
<td>1.2</td>
<td>1.44</td>
</tr>
<tr>
<td>23</td>
<td>74</td>
<td>-9.6</td>
<td>92.16</td>
<td>66</td>
<td>1.36</td>
<td>1.84</td>
<td>73</td>
<td>-5.32</td>
<td>28.30</td>
<td>71</td>
<td>6.2</td>
<td>38.44</td>
</tr>
<tr>
<td>24</td>
<td>60</td>
<td>4.4</td>
<td>19.36</td>
<td>73</td>
<td>-5.64</td>
<td>31.80</td>
<td>75</td>
<td>-7.32</td>
<td>53.58</td>
<td>53</td>
<td>11.8</td>
<td>139.24</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
<td>-7.6</td>
<td>57.76</td>
<td>70</td>
<td>-2.64</td>
<td>6.96</td>
<td>87</td>
<td>-19.32</td>
<td>373.26</td>
<td>55</td>
<td>9.8</td>
<td>96.04</td>
</tr>
</tbody>
</table>

Sums = 1610 36.76 16.84 1739.53 16.92 2449.386 1620 1938
Mean = 64.40 67.36 67.68 64.80
Test of significance of difference between mean SNS scores of group I and II.

\[
SD = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{(n_1-1)+(n_2-1)}}
\]

where:

\(SD = \) Pooled standard deviation.

\(\sum x_1^2 = \) sum of squares of deviation of scores from \(M_1 \)

\(\sum x_2^2 = \) sum of squares of deviation of scores from \(M_2 \)

\(n_1 = \) Number of subjects

\(n_2 = \) Number of subjects

Computation of standard error of the difference between the two groups (SSD)

\[
SED = SD \times \sqrt{\frac{n_1-n_2}{n_1 n_2}}
\]

since

\[
t = \frac{M_1 - M_2}{SED}
\]

where:

\(M_1 = \) Mean of group one.

\(M_2 = \) Mean of group two.

\(SED = \) Standard error of the difference between the mean of two groups.

\(df = (n_1-1) + (n_2-1) \)

By substitution:

\[
SD = \sqrt{\frac{3676+1739.53}{(25-1) + (25-1)}}
\]

\(SD = 10.62 \)
\[
SED = 10.62 \times \sqrt{\frac{25+25}{25 \times 25}}
\]
\[
= 3.003
\]
\[
t = \frac{64.40 - 67.36}{3.003}
\]
\[
t = 0.985
\]
\[
df = (25-1)+(25-1)
\]
\[
= 48
\]

not significant.

Test of significance of difference between mean SNS scores of the group I and III.

\[
SD = \sqrt{\frac{3676+2449.386}{(25-1)+(25-1)}}
\]
\[
SD = 11.29
\]
\[
SED = 11.29 \times \sqrt{\frac{25+25}{25 \times 25}}
\]
\[
= 3.193
\]
\[
t = \frac{64.40 - 67.68}{3.193}
\]
\[
df = (25-1)+(25-1)
\]
\[
= 48
\]

not significant

Test of significance of difference between mean SNS of the group I and IV.

By substitution:

\[
SD = \sqrt{\frac{3676+1938}{(25-1)+(25-1)}}
\]
\[
SD = 10.81
\]
SED = 10.81 \sqrt{\frac{25+25}{25\times25}}

SED = 3.057

t = \frac{64.40 - 64.80}{3.057}

= .130

df = (25-1) + (25-1)

= 48

Not significant

Test of significance of difference between mean SNS scores of the group II and III.

By substitution :

SD = \sqrt{\frac{1739.556 + 2449.386}{(25-1) + (25-1)}}

SD = 9.341

SED = 9.341 \times \sqrt{\frac{25+25}{25\times25}}

SED = 2.642

t = \frac{67.36 - 67.68}{2.642}

= .121

df = (25-1) + (25-1)

= 48

Not significant
Test of significance of difference between mean SNS scores of the groups II and IV.

By substituents:

\[SD = \sqrt{\frac{1739.53 + 1938}{(25-1)+(25-1)}} \]

\[SD = 8.753 \]

\[SED = \frac{8.753 \sqrt{25+25}}{\sqrt{25 \times 25}} \]

\[SED = 2.475 \]

\[t = \frac{67.56 - 64.80}{2.475} \]

\[t = 1.034 \]

\[df = (25-1)+(25-1) \]

\[df = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group III and IV.

\[SD = \sqrt{\frac{2449.386 + 1938}{(25-1)+(25-1)}} \]

\[SD = 9.560 \]

\[SED = \frac{9.560 \sqrt{25+25}}{\sqrt{25 \times 25}} \]

\[SED = 2.703 \]

\[t = \frac{67.68 - 64.80}{2.703} \]

\[t = 1.065 \]

\[df = (25-1)+(25-1) \]

\[df = 48 \]

Not significant
Table. Showing raw scores, means, deviation of each score from its x and x^2 of SNS scores in 't'-test (Sociogenic Need-experience).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>$M-x$</td>
<td>x^2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>-.6</td>
<td>.36</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>3.4</td>
<td>11.56</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>92</td>
<td>-41.6</td>
<td>1730.50</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>1.4</td>
<td>1.96</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>15.4</td>
<td>237.16</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>7.4</td>
<td>54.76</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>6.4</td>
<td>40.96</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>84</td>
<td>-33.6</td>
<td>1128.96</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>48</td>
<td>2.4</td>
<td>5.76</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>4.4</td>
<td>19.36</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>53</td>
<td>-2.6</td>
<td>6.76</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>-1.6</td>
<td>2.56</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>45</td>
<td>5.4</td>
<td>29.16</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>38</td>
<td>12.4</td>
<td>153.76</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>57</td>
<td>-6.6</td>
<td>43.56</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>58</td>
<td>-7.6</td>
<td>57.76</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>38</td>
<td>12.4</td>
<td>153.76</td>
<td>46</td>
</tr>
<tr>
<td>18</td>
<td>64</td>
<td>-13.6</td>
<td>184.96</td>
<td>51</td>
</tr>
<tr>
<td>19</td>
<td>57</td>
<td>-6.6</td>
<td>43.56</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>51</td>
<td>-.6</td>
<td>.36</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>43</td>
<td>7.4</td>
<td>54.76</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>45</td>
<td>5.4</td>
<td>29.16</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>46</td>
<td>4.4</td>
<td>19.36</td>
<td>28</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>10.4</td>
<td>108.16</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>34</td>
<td>16.4</td>
<td>268.96</td>
<td>30</td>
</tr>
</tbody>
</table>

Sums= 1260 1056 3783.25 1036 2956.076 1071 3157.23
Mean= 50.40 42.16 41.44 42.84
Test of significance of difference between mean SNS scores of group I and II.

\[
SD = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{(N_1-1)+(N_2-1)}}
\]

where:

- \(SD\) = Pooled standard deviation.
- \(x_1^2\) = Sum of squares of deviation of scores from \(M_1\).
- \(x_2^2\) = Sum of squares of deviation of scores from \(M_2\).
- \(N_1\) = Number of subjects.
- \(N_2\) = Number of subjects.

Computation of standard error of the difference between the two groups (SED)

\[
SED = SD \times \sqrt{\frac{N_1+N_2}{N_1 \times N_2}}
\]

since

\[
t = \frac{M_1 - M_2}{SED}
\]

where

- \(M_1\) = Mean of group one.
- \(M_2\) = Mean of group two.
- \(SED\) = Standard error of the difference between the mean of two groups.
- \(df = (N_1-1)+(N_2-1)\)
By substitution:

\[
SD = \sqrt{\frac{4388+3783.25}{(25-1)+(25-1)}}
\]

\[
= 13.047
\]

\[
SED = 13.047\sqrt{\frac{25+25}{25\times25}}
\]

\[
= 3.690
\]

\[
t = \frac{50.40-42.16}{3.690}
\]

\[
= 2.233
\]

\[
df = (25-1)+(25-1)
\]

\[
= 48
\]

Significant at .05 level.

Test of significance of difference between mean SNS of the group I and III.

By substitution:

\[
SD = \sqrt{\frac{4388+2950.076}{(25-1)+(25-1)}}
\]

\[
= 12.36
\]

\[
SED = 12.36\sqrt{\frac{25+25}{25\times25}}
\]

\[
= 3.495
\]

\[
t = \frac{50.40-41.44}{3.495}
\]

\[
= 2.56
\]

\[
df = (25-1)+(25-1)
\]

\[
= 48
\]

The present t-value is significant at .02 level of significance.
Test of significance of difference between mean SNS scores of the group I and IV.

\[
SD = \sqrt{\frac{4388+3157.23}{(25-1)+(25-1)}}
\]

\[
= 12.537
\]

\[
SED = 12.537 \times \sqrt{\frac{25+25}{25 \times 25}}
\]

\[
= 3.545
\]

\[
t = \frac{50.40-41.84}{3.545}
\]

\[
= 2.132
\]

\[
df = (25-1)+(25-1)
\]

\[
= 48
\]

Significant at .05 level of significance.

Test of significance of difference between mean SNS scores of the group II and III.

\[
SD = \sqrt{\frac{3783.25+2956.076}{(25-1)+(25-1)}}
\]

\[
= 11.849
\]

\[
SED = 11.849 \times \sqrt{\frac{25+25}{25 \times 25}}
\]

\[
= 3.307
\]

\[
t = \frac{42.16-41.44}{3.351}
\]

\[
= .214
\]

\[
df = (25-1)+(25-1)
\]

\[
= 48
\]

Not significant
Test of significance of difference between mean SNS scores of the group II and IV.

\[
SD = \sqrt{\frac{3783.25 + 3157.23}{24+24}} = 15.744
\]

\[
SED = 15.744 \sqrt{\frac{50}{925}} = 4.45
\]

\[
t = \frac{42.16 - 42.84}{4.45} = .152
\]

\[
df = (25-1)+(25-1) = 48
\]

The present t-value is not significant.

Test of significance of difference between mean SNS scores of the group III and IV.

By substitution:

\[
SD = \sqrt{\frac{2956.076 + 3157.23}{(25-1)+(25-1)}} = 11.285
\]

\[
SED = 11.285 \sqrt{\frac{25+25}{25x25}} = 3.191
\]

\[
t = \frac{41.44 - 42.84}{3.191} = .438
\]

\[
df = (25-1)+(25-1)
\]

Not significant
Table: Showing raw scores, deviation of each score from its mean x ans x for Acceptance-satisfaction ‘t’ test.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>$M-x$</td>
<td>x^2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2.44</td>
<td>5.95</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>-3.56</td>
<td>12.67</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>5.44</td>
<td>29.59</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-1.56</td>
<td>2.43</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>5.54</td>
<td>29.59</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>3.44</td>
<td>11.83</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>-2.56</td>
<td>6.55</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>13.44</td>
<td>180.63</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>-1.56</td>
<td>2.43</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>-2.56</td>
<td>6.55</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>-1.56</td>
<td>2.43</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>1.44</td>
<td>2.07</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>-3.56</td>
<td>12.67</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>-5.6</td>
<td>.313</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>-5.6</td>
<td>.313</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>9.44</td>
<td>89.11</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>4.56</td>
<td>20.79</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>6.56</td>
<td>43.03</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>5.44</td>
<td>29.59</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>4.44</td>
<td>19.71</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>-8.56</td>
<td>30.91</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>-3.56</td>
<td>12.67</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>-1.56</td>
<td>2.43</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>-4.56</td>
<td>20.79</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>6.56</td>
<td>43.03</td>
<td>23</td>
</tr>
</tbody>
</table>

| Sums | 461 | 618.07 | 490 | 520 | 316.32 | 492 | 249.34 |
| Mean | 18.44 | 19.6 | 20.8 | 19.68 |

\(\sigma^2 = 249.34 \)
Test of significance of difference between mean SNS of group I and II.

\[
SD = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{(N_1-1)+(N_2-1)}}
\]

where:

- \(SD\) = Pooled standard deviation
- \(\sum x_1^2\) = Sum of squares of deviation of scores from \(N_1\)
- \(\sum x_2^2\) = Sum of squares of deviation of scores from \(N_2\)
- \(N_1\) = Number of subjects.
- \(N_2\) = Number of subjects.

Computation of standard error of the difference between the two groups (SED)

\[
SED = SD \times \sqrt{\frac{N_1 + N_2}{N_1 \times N_2}}
\]

since

\[
t = \frac{N_1 - N_2}{SED}
\]

where

- \(N_1\) = Mean of group one
- \(N_2\) = Mean of group two.

SED = Standard error of the difference between the mean of two groups.
By substitution:

\[SD = \sqrt{\frac{618.07 + 250}{(25-1) + (25-1)}} \]

\[= 4.25 \]

\[SED = 4.25 \sqrt{\frac{25 + 25}{25 \times 25}} \]

\[= 1.20 \]

\[t = \frac{18.44 - 19.6}{1.20} \]

\[= .966 \]

\[df = (25-1) + (25-1) \]

\[= 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group I and III.

By substitution:

\[SD = \sqrt{\frac{618.07 + 316.32}{(25-1) + (25-1)}} \]

\[= 4.41 \]

\[SED = 4.41 \sqrt{\frac{25 + 25}{25 \times 25}} \]

\[= 1.24 \]

\[t = \frac{18.44 - 20.8}{1.24} \]

\[df = (25-1) + (25-1) \]

\[= 48 \]

Not significant
Test of significance of difference between mean SNS scores of the group I and IV.

By substitution:

\[SD = \sqrt{\frac{618.07 + 249.34}{(25-1) + (25-1)}} \]

\[= 4.25 \]

\[SED = 4.25 \sqrt{\frac{25+25}{25 \times 25}} \]

\[= 1.20 \]

\[t = \frac{18.44 - 19.68}{1.20} \]

\[= 1.03 \]

\[df = (25-1) + (25-1) \]

\[= 48 \]

Not significant.

Test of significance of difference between mean SNS scores of the group II and III.

By substitution:

\[SD = \sqrt{\frac{250 + 316.32}{(25-1) + (25-1)}} \]

\[= 3.43 \]

\[SED = 3.43 \sqrt{\frac{25+25}{25 \times 25}} \]

\[= .970 \]

\[t = \frac{19.6 - 20.8}{.970} \]

\[= 2.12 \]
= 1.23
\text{df} = 48
\text{Not significant.}

Test of significance of difference between mean SNS scores of the group II and IV.

By substitution
\begin{align*}
\text{SD} &= \sqrt{\frac{250+249.34}{(25-1)+(25-1)}} \\
&= 3.22
\text{SED} &= \frac{\sqrt{25+25}}{3.22 \sqrt{25 \times 25}} \\
&= .910
\text{t} &= \frac{19.6-19.68}{.910} \\
&= .087
\text{df} &= 48
\text{Not significant}
\end{align*}

Test of significance of difference between mean SNS scores of the group III and IV.

\begin{align*}
\text{SD} &= \sqrt{\frac{316.32+249.34}{(25-1)+(25-1)}} \\
&= 3.43
\text{SED} &= 3.43 \times \sqrt{\frac{25+25}{25 \times 25}} \\
&= .970
\text{t} &= \frac{20.8-19.68}{.970} \\
&= 1.15
\text{df} &= 48
\text{Not significant.}
<table>
<thead>
<tr>
<th>SNo.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>M-x</td>
<td>x²</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>3.56</td>
<td>12.67</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>-.44</td>
<td>.19</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>6.56</td>
<td>43.03</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>-5.44</td>
<td>29.59</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1.56</td>
<td>2.43</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>3.56</td>
<td>12.67</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>-.44</td>
<td>.19</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>7.56</td>
<td>57.15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>6.56</td>
<td>43.05</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>-7.44</td>
<td>55.35</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>1.56</td>
<td>43.03</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>-.44</td>
<td>.19</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>-5.44</td>
<td>29.59</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>.56</td>
<td>.31</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>-.44</td>
<td>.19</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>6.56</td>
<td>43.03</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>3.56</td>
<td>12.67</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>-7.44</td>
<td>55.35</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>8.56</td>
<td>73.27</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td>.56</td>
<td>.31</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>-5.44</td>
<td>29.59</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>-5.44</td>
<td>29.59</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>-7.44</td>
<td>55.35</td>
<td>16</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>1.56</td>
<td>43.03</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>6.44</td>
<td>41.47</td>
<td>19</td>
</tr>
</tbody>
</table>

Sums: 439 713.27 403 243.4 432 568.83 406 248.19

Mean: 17.56 16.2 17.28 16.24
Tests of significance of difference between mean SNS Scores of group I and II.

\[
SD = \sqrt{\frac{\bar{x}_1^2 + \bar{x}_2^2}{(N_1-1)+(N_2-1)}}
\]

where

- **SD** = Pooled standard deviation.
- \(x^2\) = sum of square of deviation of scores from \(M_1\)
- \(x^2\) = Sum of squares of deviation of scores from \(M_2\).
- \(N_1\) = Number of subjects
- \(N_2\) = Number of subjects.

Computation of standard error of the difference between the low groups (SED)

\[
SED = SD x \sqrt{\frac{N_1+N_2}{N_1+N_2}}
\]

since

\[
t = \frac{N_1 - N_2}{SED}
\]

where

- \(M_1\) = Mean of group one.
- \(M_2\) = Mean of group two.
- **SED** = Standard error of the difference between the mean of two groups

\[
df = (N_1-1)+(N_2-1)
\]
\[
\begin{align*}
SD &= \sqrt\frac{713.27 + 243.4}{(25-1)+(25-1)} \\
&= 4.46 \\
SED &= 4.46\sqrt{\frac{25+25}{25\times25}} \\
&= 1.26 \\
t &= \frac{17.56 - 16.2}{1.26} \\
&= 1.07 \\
df &= (25-1)+(25-1) \\
&= 48 \\
\text{Not significant}
\end{align*}
\]

Test of significance of difference between mean SNS scores of the group I and III.

\[
\begin{align*}
SD &= \sqrt\frac{713.27 + 568.83}{(25-1)+(25-1)} \\
&= 5.16 \\
SED &= 5.16\sqrt{\frac{25+25}{25\times25}} \\
&= 1.45 \\
t &= \frac{17.56 - 17.28}{1.45} \\
&= 1.93 \\
df &= 48 \\
\text{Not significant}
\end{align*}
\]

Test of significance of difference between mean SNS scores of the group I and IV.
Test of significance of difference between mean SNS scores of the group II and III

\[SD = \sqrt{\frac{243.4 + 568.83}{(25-1)+(25-1)}} \]
\[= 4.11 \]

\[SED = 4.11 \sqrt{\frac{25 + 25}{25 \times 25}} \]
\[= 1.162 \]

\[t = \frac{16.2 - 17.28}{1.162} \]
\[= .929 \]

\[df = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the groups II and IV.

\[SD = \sqrt{\frac{243.4 + 248.19}{(25-1)+(25-1)}} \]
\[= 3.20 \]

\[SED = 3.20 \sqrt{\frac{25 + 25}{25 \times 25}} \]
\[= .905 \]

\[t = \frac{16.2 - 16.24}{.905} \]
\[= .044 \]

\[df = 48 \]

Not significant
Test of significance of difference between mean SNS scores of the group III and IV.

\[
SD = \sqrt{\frac{568.83 + 248.19}{(25-1) + (25-1)}} = 4.12
\]

\[
SED = 4.12 \sqrt{\frac{25 + 25}{25 \times 25}} = 1.16
\]

\[
t = \frac{17.28 - 16.24}{1.16} = .896
\]

\[
df = 48
\]

Not significant.
Table. Showing raw scores, means, deviations of each scores from its mean \(x \) and \(x^2 \) for Identification-satisfaction 't'-test.

<table>
<thead>
<tr>
<th>No.</th>
<th>I (x)</th>
<th>II (x)</th>
<th>III (x)</th>
<th>IV (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M-x)</td>
<td>(x^2)</td>
<td>(M-x)</td>
<td>(x^2)</td>
</tr>
<tr>
<td>19</td>
<td>1.08</td>
<td>1.16</td>
<td>6.36</td>
<td>40.44</td>
</tr>
<tr>
<td>23</td>
<td>-2.92</td>
<td>8.52</td>
<td>-4.64</td>
<td>21.52</td>
</tr>
<tr>
<td>12</td>
<td>8.08</td>
<td>65.28</td>
<td>6.36</td>
<td>40.44</td>
</tr>
<tr>
<td>25</td>
<td>-4.92</td>
<td>24.20</td>
<td>1.36</td>
<td>1.84</td>
</tr>
<tr>
<td>14</td>
<td>6.08</td>
<td>36.96</td>
<td>-3.64</td>
<td>13.24</td>
</tr>
<tr>
<td>12</td>
<td>8.08</td>
<td>65.28</td>
<td>-6.4</td>
<td>.40</td>
</tr>
<tr>
<td>23</td>
<td>-2.92</td>
<td>8.52</td>
<td>-3.64</td>
<td>13.24</td>
</tr>
<tr>
<td>13</td>
<td>7.03</td>
<td>50.12</td>
<td>-5.64</td>
<td>31.80</td>
</tr>
<tr>
<td>14</td>
<td>6.08</td>
<td>36.96</td>
<td>-6.4</td>
<td>.40</td>
</tr>
<tr>
<td>21</td>
<td>-.92</td>
<td>.84</td>
<td>-1.64</td>
<td>2.68</td>
</tr>
<tr>
<td>22</td>
<td>-.92</td>
<td>3.68</td>
<td>5.36</td>
<td>28.42</td>
</tr>
<tr>
<td>18</td>
<td>.08</td>
<td>.006</td>
<td>.36</td>
<td>.12</td>
</tr>
<tr>
<td>18</td>
<td>7.08</td>
<td>4.32</td>
<td>-6.4</td>
<td>.40</td>
</tr>
<tr>
<td>24</td>
<td>-3.92</td>
<td>15.36</td>
<td>-2.64</td>
<td>6.96</td>
</tr>
<tr>
<td>22</td>
<td>-.42</td>
<td>3.68</td>
<td>-3.64</td>
<td>13.24</td>
</tr>
<tr>
<td>21</td>
<td>-.92</td>
<td>.84</td>
<td>-3.64</td>
<td>13.24</td>
</tr>
<tr>
<td>20</td>
<td>.08</td>
<td>.006</td>
<td>.36</td>
<td>.12</td>
</tr>
<tr>
<td>24</td>
<td>.08</td>
<td>3.68</td>
<td>-3.64</td>
<td>13.24</td>
</tr>
<tr>
<td>25</td>
<td>.92</td>
<td>15.36</td>
<td>2.36</td>
<td>5.56</td>
</tr>
<tr>
<td>10</td>
<td>1.03</td>
<td>1.16</td>
<td>3.36</td>
<td>11.28</td>
</tr>
<tr>
<td>21</td>
<td>-.92</td>
<td>.84</td>
<td>4.3</td>
<td>18.49</td>
</tr>
<tr>
<td>24</td>
<td>-3.92</td>
<td>15.36</td>
<td>-6.64</td>
<td>31.80</td>
</tr>
<tr>
<td>25</td>
<td>-4.92</td>
<td>24.20</td>
<td>3.36</td>
<td>11.28</td>
</tr>
<tr>
<td>18</td>
<td>2.08</td>
<td>4.32</td>
<td>4.64</td>
<td>21.52</td>
</tr>
<tr>
<td>23</td>
<td>-.92</td>
<td>8.52</td>
<td>2.36</td>
<td>5.56</td>
</tr>
</tbody>
</table>

\(s = 502 \)
\(n = 20.08 \)
\[SD = \frac{\sqrt{\sum x_1^2 + \sum x_2^2}}{\sqrt{N_1-1} + \sqrt{N_2-1}} \]

where:

- \(SD \) = Standard Pooled deviation.
- \(\sum x_1^2 \) = Sum of squares of deviation of score from \(M_1 \)
- \(\sum x_2^2 \) = sum of squares of deviation of scores from \(M_2 \)
- \(N_1 \) = Number of subjects.
- \(N_2 \) = Numbers of subjects.

Computation of standard error of the difference between the two groups (SED)

\[SED = SD \times \frac{\sqrt{N_1 + N_2}}{\sqrt{N_1 \times N_2}} \]

since

\[t = \frac{M_1 - M_2}{SED} \]

where:

- \(M_1 \) = Mean of group one.
- \(M_2 \) = Mean of group two.

SED = Standard error of the difference between the mean of two groups:

By substitution:

\[SD = \frac{\sqrt{419.69 + 327.01}}{(25-1) + (25-1)} \]

\[= 3.94 \]
\[\text{SED} = 3.94 \times \sqrt{\frac{25+25}{25 \times 25}} \]
\[= 1.11 \]
\[t = \frac{20.08 - 19.36}{1.11} \]
\[= .648 \]
\[\text{df} = (25-1)+(25-1) \]
\[= 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group I and III.

\[\text{SD} = \sqrt{\frac{419.69+494.39}{(25-1)+(25-1)}} \]
\[= 4.36 \]
\[\text{SED} = 4.36 \sqrt{\frac{25+25}{25 \times 25}} \]
\[= 1.23 \]
\[t = \frac{20.08 - 20.52}{1.23} \]
\[= .357 \]
\[\text{df} = 48 \]

Not significant.

Test of significance of difference between mean SNS scores of the group I and III.

\[\text{SD} = \sqrt{\frac{419.69+382.37}{(25-1)+(25-1)}} \]
\[= 4.08 \]
SED = $4.08\sqrt{\frac{25+25}{25\times25}}$

= 1.15

t = $\frac{20.08-18.24}{1.15}$

= 1.6

df = 48

Not significant

Test of significance of difference between mean SNS scores of the group II and III.

SD = $\sqrt{\frac{327.01+494.39}{(25-1)+(25-1)}}$

= 4.13

SED $= 4.13\sqrt{\frac{25+25}{25\times25}}$

= 1.16

t = $\frac{19.36-20.52}{1.16}$

= 1

df = 48

Not significant

Test of significance of difference between mean SNS scores of the group II and IV.

SD = $\sqrt{\frac{327.01+382.37}{(25-1)+(25-1)}}$

= 3.84
\[SED = 3.84 \times \sqrt{\frac{25+25}{25\times25}} \]
\[= 1.08 \]
\[t = \frac{19.36-18.24}{1.08} \]
\[= 1.03 \]
\[df=48 \]

Not significant

Test of significance of difference between mean SNS scores of the group III and IV.

\[SD = \sqrt{\frac{494.39+382.37}{(25-1)+(25-1)}} \]
\[= 4.27 \]
\[SED= 4.27 \sqrt{\frac{25+25}{25\times25}} \]
\[=1.20 \]
\[t = \frac{20.52-18.24}{1.20} \]
\[= 1.90 \]
\[df = 48 \]

Not significant
Table: Showing raw scores, means, deviations of each scores from its mean x and x^2 for Dominance-satisfaction 't'-test.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>x</th>
<th>$M-x$</th>
<th>x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2.08</td>
<td>4.32</td>
<td>13</td>
<td>-2.16</td>
<td>4.66</td>
<td>11</td>
<td>-1.4</td>
<td>1.96</td>
<td>8</td>
<td>2.68</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>13</td>
<td>-2.16</td>
<td>4.66</td>
<td>9</td>
<td>.6</td>
<td>.36</td>
<td>9</td>
<td>1.68</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>8</td>
<td>.84</td>
<td>8.06</td>
<td>10</td>
<td>-.4</td>
<td>.16</td>
<td>12</td>
<td>-1.32</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>3.92</td>
<td>15.36</td>
<td>17</td>
<td>-6.16</td>
<td>37.49</td>
<td>11</td>
<td>-1.4</td>
<td>1.96</td>
<td>12</td>
<td>-1.32</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>1.92</td>
<td>3.68</td>
<td>9</td>
<td>1.84</td>
<td>3.38</td>
<td>16</td>
<td>-6.4</td>
<td>40.96</td>
<td>6</td>
<td>4.68</td>
<td>21.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>-.92</td>
<td>.84</td>
<td>5</td>
<td>5.84</td>
<td>34.10</td>
<td>19</td>
<td>-.9</td>
<td>8.83</td>
<td>11</td>
<td>-.32</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4.08</td>
<td>16.64</td>
<td>23</td>
<td>-12.16</td>
<td>147.86</td>
<td>4</td>
<td>5.6</td>
<td>31.36</td>
<td>9</td>
<td>1.68</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>8</td>
<td>.84</td>
<td>8.06</td>
<td>18</td>
<td>-.8</td>
<td>70.56</td>
<td>15</td>
<td>-4.32</td>
<td>18.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>-2.92</td>
<td>8.52</td>
<td>13</td>
<td>-2.16</td>
<td>4.66</td>
<td>15</td>
<td>-.5</td>
<td>29.16</td>
<td>13</td>
<td>-2.32</td>
<td>5.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>11</td>
<td>-.1</td>
<td>.02</td>
<td>17</td>
<td>-.7</td>
<td>54.76</td>
<td>8</td>
<td>2.68</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>1.08</td>
<td>1.16</td>
<td>12</td>
<td>-1.16</td>
<td>1.34</td>
<td>12</td>
<td>-2.4</td>
<td>5.76</td>
<td>2</td>
<td>8.68</td>
<td>75.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>8</td>
<td>2.84</td>
<td>8.06</td>
<td>22</td>
<td>-12.4</td>
<td>183.76</td>
<td>15</td>
<td>-4.32</td>
<td>18.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>1.08</td>
<td>1.16</td>
<td>10</td>
<td>.84</td>
<td>.70</td>
<td>3</td>
<td>6.6</td>
<td>43.56</td>
<td>7</td>
<td>3.68</td>
<td>13.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>-.92</td>
<td>.84</td>
<td>9</td>
<td>.84</td>
<td>7.38</td>
<td>7</td>
<td>2.6</td>
<td>6.76</td>
<td>10</td>
<td>.68</td>
<td>.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>1.92</td>
<td>3.68</td>
<td>10</td>
<td>.84</td>
<td>.70</td>
<td>4</td>
<td>5.6</td>
<td>31.36</td>
<td>5</td>
<td>5.68</td>
<td>32.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>4.08</td>
<td>16.64</td>
<td>7</td>
<td>-.6</td>
<td>37.49</td>
<td>8</td>
<td>1.6</td>
<td>2.56</td>
<td>17</td>
<td>-.62</td>
<td>38.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>-.92</td>
<td>.84</td>
<td>13</td>
<td>-.2</td>
<td>4.66</td>
<td>5</td>
<td>4.6</td>
<td>21.16</td>
<td>8</td>
<td>2.68</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>-6.92</td>
<td>47.88</td>
<td>10</td>
<td>.84</td>
<td>.70</td>
<td>8</td>
<td>5.6</td>
<td>31.36</td>
<td>18</td>
<td>-.72</td>
<td>53.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>11.92</td>
<td>142.08</td>
<td>8</td>
<td>2.84</td>
<td>8.06</td>
<td>11</td>
<td>-1.4</td>
<td>1.96</td>
<td>12</td>
<td>-1.32</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>-.92</td>
<td>.84</td>
<td>6</td>
<td>4.84</td>
<td>23.42</td>
<td>4</td>
<td>5.6</td>
<td>31.36</td>
<td>12</td>
<td>-1.32</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>9</td>
<td>1.84</td>
<td>3.38</td>
<td>2</td>
<td>7.6</td>
<td>57.76</td>
<td>17</td>
<td>-.62</td>
<td>38.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>.08</td>
<td>0.06</td>
<td>6</td>
<td>4.84</td>
<td>23.42</td>
<td>8</td>
<td>8.6</td>
<td>73.96</td>
<td>11</td>
<td>-.32</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>.08</td>
<td>25.80</td>
<td>13</td>
<td>-2.16</td>
<td>4.66</td>
<td>4</td>
<td>5.6</td>
<td>31.36</td>
<td>11</td>
<td>-.32</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>6.08</td>
<td>36.96</td>
<td>9</td>
<td>1.84</td>
<td>3.38</td>
<td>0</td>
<td>9.6</td>
<td>92.16</td>
<td>8</td>
<td>2.68</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>9.08</td>
<td>82.44</td>
<td>11</td>
<td>-.1</td>
<td>.02</td>
<td>19</td>
<td>-.9</td>
<td>88.36</td>
<td>11</td>
<td>-.32</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sum | 227 | 409.722| 271 | 376.32| 240 | 992.8 | 267 | 362.04|
| Mean | 9.08 | 10.8 | 9.6 | 10.68 | | | | |

4.8
where:

\[
SD = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{(N_1-1)+(N_2-1)}}
\]

SD = Pooled standard deviation.

\(x_1^2 = \text{sum of squares of deviation of scores from } M_1\)

\(x_2^2 = \text{sum of squares of deviation of scores from } M_2\)

\(N_1 = \text{Number of subjects.}\)

\(N_2 = \text{Number of subjects.}\)

Computation of standard error of the difference between the two groups (SED)

\[
SED = SD \sqrt{\frac{N_1 + N_2}{N_1 \times N_2}}
\]

since

\[
t = \frac{M_1 - M_2}{SED}
\]

where

\(M_1 = \text{Mean of group one.}\)

\(M_2 = \text{Mean of group two.}\)

SED = standard error of the difference between the mean of two groups.

\(df = (N_1 - 1) + (N_2 - 1)\)

By substitution:

\[
SD = \sqrt{\frac{409.722 + 376.32}{(25-1)+(25-1)}}
\]

\[
= 4.04
\]

\[
SED = 4.04 \sqrt{\frac{25+25}{25 \times 25}}
\]

\[
= 1.14
\]
\[t = \frac{9.08-10.84}{1.14} = 1.54 \]

\[df = (25-1)+(25-1) = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group I and III.

\[SD = \sqrt{\frac{409.722+992.8}{(25-1)+(25-1)}} = 5.40 \]

\[SED = 5.40 \sqrt{\frac{25+25}{25\times25}} = 1.52 \]

\[t = \frac{9.08-9.6}{1.52} = .342 \]

\[df = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group I and IV.

\[SD = \sqrt{\frac{409.722+362.04}{(25-1)+(25-1)}} = 4.00 \]

\[SED = 4.00 \sqrt{\frac{25+25}{25\times25}} = 1.13 \]
\[t = \frac{9.08 - 10.68}{1.13} = 1.41 \]

\[df = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group II and IV.

\[SD = \sqrt{\frac{376.32 + 992.8}{(25-1)+(25-1)}} = 5.34 \]

\[SED = 5.34 \sqrt{\frac{25+25}{25 \times 25}} = 1.51 \]

\[t = \frac{10.84 - 9.6}{1.51} = 0.821 \]

\[df = 48 \]

Not significant

Test of significance of difference between mean SNS scores of the group II and IV.

\[SD = \sqrt{\frac{376.32 + 362.04}{(25-1)+(25-1)}} = 3.92 \]

\[SED = 3.92 \sqrt{\frac{25+25}{25 \times 25}} = 1.10 \]

\[t = \frac{10.84 - 10.68}{1.10} = 0.145 \]

\[df = 48 \]

Not significant.
Test of significance of difference between mean SNS scores of the group III and Iv.

\[
\text{sd} = \sqrt{\frac{992.8 + 362.04}{(25-1)+(25-1)}}
\]
\[= 5.31\]

\[
\text{SED} = 5.31 \sqrt{\frac{25+25}{25 \times 25}}
\]
\[= 1.50\]

\[
\text{t} = \frac{9.6 - 10.68}{1.50}
\]
\[= .72\]

\[
\text{df} = 46
\]

Not significant.
Table. Showing raw scores, mean, deviation of each scores from the mean x and x^2 for rejection—experience 't'-test.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1.8</td>
<td>3.24</td>
<td>0</td>
<td>3.04</td>
<td>9.24</td>
<td>2</td>
<td>6.8</td>
<td>-2.96</td>
<td>8.76</td>
<td>5</td>
<td>1.8</td>
<td>3.24</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.8</td>
<td>3.24</td>
<td>3</td>
<td>3.38</td>
<td>.04</td>
<td>001</td>
<td>7</td>
<td>3.04</td>
<td>9.24</td>
<td>5</td>
<td>-5.96</td>
<td>35.52</td>
<td>10</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>-18.2</td>
<td>331.24</td>
<td>3</td>
<td>-1.16</td>
<td>2.04</td>
<td>4.16</td>
<td>11</td>
<td>1.8</td>
<td>3.24</td>
<td>7.36</td>
<td>5</td>
<td>-1.96</td>
<td>3.84</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.8</td>
<td>46.24</td>
<td>6</td>
<td>9.98</td>
<td>3.04</td>
<td>9.24</td>
<td>12</td>
<td>-1.2</td>
<td>4.84</td>
<td>23.04</td>
<td>5</td>
<td>-5.96</td>
<td>35.52</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3.8</td>
<td>14.44</td>
<td>0</td>
<td>-1.16</td>
<td>2.04</td>
<td>4.16</td>
<td>13</td>
<td>5.8</td>
<td>33.64</td>
<td>0</td>
<td>2.04</td>
<td>4.16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5.8</td>
<td>33.64</td>
<td>0</td>
<td>-1.16</td>
<td>2.04</td>
<td>4.16</td>
<td>14</td>
<td>3.8</td>
<td>14.44</td>
<td>7</td>
<td>-3.96</td>
<td>15.56</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.8</td>
<td>33.64</td>
<td>15</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>15</td>
<td>3.8</td>
<td>14.44</td>
<td>4</td>
<td>-1.96</td>
<td>3.84</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>-18.2</td>
<td>331.24</td>
<td>2</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>16</td>
<td>3.8</td>
<td>14.44</td>
<td>7</td>
<td>-3.96</td>
<td>15.56</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2.8</td>
<td>7.84</td>
<td>0</td>
<td>-1.16</td>
<td>2.04</td>
<td>4.16</td>
<td>17</td>
<td>6.8</td>
<td>.64</td>
<td>4.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>-2.2</td>
<td>4.84</td>
<td>1</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>18</td>
<td>-3.2</td>
<td>10.24</td>
<td>5</td>
<td>-1.96</td>
<td>3.84</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>2.8</td>
<td>7.84</td>
<td>1</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>19</td>
<td>-7.2</td>
<td>51.84</td>
<td>0</td>
<td>-4.96</td>
<td>24.96</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>-2.2</td>
<td>4.84</td>
<td>2</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>20</td>
<td>6.8</td>
<td>.64</td>
<td>4.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1.8</td>
<td>3.24</td>
<td>7</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>21</td>
<td>3.8</td>
<td>14.44</td>
<td>7</td>
<td>-3.96</td>
<td>15.56</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>3.8</td>
<td>14.44</td>
<td>4</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>22</td>
<td>4.8</td>
<td>23.04</td>
<td>5</td>
<td>-1.96</td>
<td>3.84</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>3.2</td>
<td>10.24</td>
<td>6</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>23</td>
<td>5.8</td>
<td>33.64</td>
<td>1</td>
<td>2.04</td>
<td>4.16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>-14.2</td>
<td>201.64</td>
<td>2</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>24</td>
<td>6.8</td>
<td>46.24</td>
<td>1</td>
<td>2.04</td>
<td>4.16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>8.8</td>
<td>78.4</td>
<td>6</td>
<td>3.38</td>
<td>.04</td>
<td>.001</td>
<td>25</td>
<td>6.8</td>
<td>46.24</td>
<td>5</td>
<td>1.96</td>
<td>3.84</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>170</td>
<td>1274.36</td>
<td>76</td>
<td>285.86</td>
<td>101</td>
<td>384.92</td>
<td>121</td>
<td>305.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mean = 6.8

Sums = 170 1274.36 76 285.86 101 384.92 121 305.23
SD = \sqrt{\frac{\sum x^2_1 + \sum x^2_2}{(N_1 - 1) + (N_2 - 1)}}

whereas:

SD = Pooled standard deviation.

\[x^2_1 = \text{Sum of squares of deviation of scores from } M_1 \]

\[x^2_2 = \text{sum of squares of deviation of scores from } M_2 \]

\[N_1 = \text{Number of subjects.} \]

\[N_2 = \text{Number of subjects.} \]

Computation of standard error of the difference between the two groups (SED):

\[SED = SD \times \sqrt{\frac{N_1 + N_2}{N_1 \times N_2}} \]

since

\[t = \frac{M_1 - M_2}{SED} \]

where:

\[M_1 = \text{Mean of group one.} \]

\[M_2 = \text{Mean of group two.} \]

SED = standard error of the difference between the mean of two groups.

\[df = (n_1 - n) + (n_2 - 1) \]

By substitution:

\[SD = \sqrt{1274.36 + 285.86} \]

\[= 570 \]
SED = 5.70 \sqrt{\frac{25+25}{25 \times 25}}

= 1.61

t = \frac{6.8 - 3.04}{1.61}

= 2.33

df = (25-1) \times (25-1)

= 48

The present t-value is significant at .05 level.

Test of significance of difference between mean SNS scores of the group I and III.

SD = \sqrt{\frac{1274.36 + 384.92}{(25-1) + (25-1)}}

= 5.87

SED = 5.87 \sqrt{\frac{25+25}{25 \times 25}}

= 1.66

t = \frac{6.8 - 4.04}{1.66}

= 1.66

df = 48

Not significant

Test of significance of difference between mean SNS scores of the group I and IV.

SD = \sqrt{\frac{1274.36 + 305.23}{(25-1) + (25-1)}}

= 5.73

SED = 5.73 \sqrt{\frac{25+25}{25 \times 25}}

= 1.62
\[
t = \frac{6.8 - 4.84}{1.62} = 1.20
\]
df = 48
Not significant

Test of significance of difference between mean SNS scores of the group II and III.

\[
SD = \sqrt{\frac{285.86 + 384.92}{(25-1)+(25-1)}} = 3.73
\]
SED = \frac{3.73}{\sqrt{\frac{25+25}{25 \times 25}}} = 1.05
\[
t = \frac{3.04 - 4.04}{1.05} = .952
\]
df = .952
Not significant

Test of significance of difference between mean SNS scores of the group II and IV.

\[
SD = \sqrt{\frac{285.86 + 305.23}{(25-1)+(25-1)}} = 3.50
\]
SED = \frac{3.50}{\sqrt{\frac{25+25}{25 \times 25}}} = .989
\[
t = \frac{3.04 - 4.84}{.989} = 1.82
\]
df = 48
Not significant.
Test of significance of difference between mean SNS scores of the group III and IV.

\[
SD = \sqrt{\frac{384.92 + 305.23}{(25-1) + (25-1)}}
\]

= 3.79

\[
SED = 3.79 \sqrt{\frac{25+25}{25 \times 25}}
\]

= 1.07

\[
t = \frac{4.04 - 4.84}{1.07}
\]

= 0.747

\[
df = 48
\]

Not significant
TABLE: Showing raw scores, mean, deviation of each scores from its mean x and x^2 for isolation experience. 4.10 't' test.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>$M-x$</td>
<td>x^2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>-.176</td>
<td>3.09</td>
<td>8</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>-.176</td>
<td>3.09</td>
<td>8</td>
<td>4.84</td>
</tr>
<tr>
<td>3</td>
<td>-10.76</td>
<td>115.77</td>
<td>16</td>
<td>-5.8</td>
</tr>
<tr>
<td>4</td>
<td>-2.76</td>
<td>7.61</td>
<td>17</td>
<td>-6.8</td>
</tr>
<tr>
<td>5</td>
<td>-3.76</td>
<td>14.13</td>
<td>7</td>
<td>3.2</td>
</tr>
<tr>
<td>6</td>
<td>-1.72</td>
<td>3.09</td>
<td>6</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>2.24</td>
<td>5.01</td>
<td>15</td>
<td>-4.8</td>
</tr>
<tr>
<td>8</td>
<td>-4.76</td>
<td>22.65</td>
<td>8</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>.61</td>
<td>12</td>
<td>-1.8</td>
</tr>
<tr>
<td>10</td>
<td>-3.24</td>
<td>10.49</td>
<td>7</td>
<td>3.2</td>
</tr>
<tr>
<td>11</td>
<td>-4.76</td>
<td>22.65</td>
<td>11</td>
<td>-.8</td>
</tr>
<tr>
<td>12</td>
<td>-1.24</td>
<td>1.53</td>
<td>10</td>
<td>.2</td>
</tr>
<tr>
<td>13</td>
<td>6.24</td>
<td>38.93</td>
<td>8</td>
<td>2.2</td>
</tr>
<tr>
<td>14</td>
<td>2.24</td>
<td>85.37</td>
<td>13</td>
<td>-2.8</td>
</tr>
<tr>
<td>15</td>
<td>-.76</td>
<td>.57</td>
<td>10</td>
<td>.2</td>
</tr>
<tr>
<td>16</td>
<td>-1.76</td>
<td>3.08</td>
<td>6</td>
<td>4.2</td>
</tr>
<tr>
<td>17</td>
<td>1.24</td>
<td>1.53</td>
<td>11</td>
<td>-.8</td>
</tr>
<tr>
<td>18</td>
<td>-4.76</td>
<td>22.65</td>
<td>13</td>
<td>-2.8</td>
</tr>
<tr>
<td>19</td>
<td>-.76</td>
<td>.57</td>
<td>5</td>
<td>5.2</td>
</tr>
<tr>
<td>20</td>
<td>-3.76</td>
<td>14.13</td>
<td>13</td>
<td>-2.8</td>
</tr>
<tr>
<td>21</td>
<td>1.24</td>
<td>1.53</td>
<td>15</td>
<td>-.8</td>
</tr>
<tr>
<td>22</td>
<td>5.24</td>
<td>27.47</td>
<td>11</td>
<td>-8.64</td>
</tr>
<tr>
<td>23</td>
<td>4.24</td>
<td>17.97</td>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>1.24</td>
<td>1.53</td>
<td>10</td>
<td>.2</td>
</tr>
<tr>
<td>25</td>
<td>11.24</td>
<td>126.33</td>
<td>3</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Sum 306 336.37 225 349.08 257 708.94 257 344.83

Mean=12.24 10.2 10.28 10.28
\[SD = \sqrt{\frac{\Sigma x_1^2 + \Sigma x_2^2}{(N_1-1)+(N_2-1)}} \]

where

- \(SD \) = Pooled standard deviation.
- \(x_1^2 \) = Sum of squares of deviation of scores from \(M_1 \)
- \(x_2^2 \) = Sum of square of deviation of scores from \(M_2 \)
- \(N_1 \) = Number of subjects.
- \(N_2 \) = Number of subjects.

Computation of standard error of the difference between the two groups (SED).

\[SED = SD \times \sqrt{\frac{N_1 - M_2}{N_1 \times N_2}} \]

since

\[t = \frac{M_1 - M_2}{SED} \]

where

- \(M_1 \) = Mean of group one.
- \(M_2 \) = Mean of group two.

SED = Standard error of the difference between the mean of two groups.

\[df = (n_1 -1)+(n_2-1) \]

By substitution:

\[SD = \sqrt{558.37+349.08} \]

\[= \sqrt{907.45} \]

\[= 4.34 \]
SED = \sqrt{\frac{25+25}{25\times25}} = 1.22

t = \frac{12.24-10.2}{1.22} = 1.67

df = (25-1)+(25-1) = 48

Not significant

Test of significance of difference between mean SNS scores of the group I and III.

SD = \sqrt{\frac{558.37+708.94}{(25-1)+(25-1)}} = 5.13

SED = 5.13 \sqrt{\frac{25+25}{25\times25}} = 1.45

t = \frac{12.24-10.28}{1.45} = 1.35

df = 48

Not significant

Test of significance of difference between mean SNS scores of the group I and IV.

SD = \sqrt{\frac{558.37+344.83}{(25-1)+(25-1)}} = 4.33
SED = 4.33 \sqrt{\frac{25+25}{25 \times 25}}
= 1.22

\[t = \frac{12.24-10.28}{1.22} \]
= 1.60

\[df = 48 \]
Not significant

Test of significance of difference between mean SNS scores of the group II and III.

\[SD = \sqrt{\frac{349.08+708.94}{(25-1)+(25-1)}} \]
= 4.69

\[SED = 4.69 \sqrt{\frac{25+25}{25 \times 25}} \]
= 1.32

\[t = \frac{10.2-10.28}{1.32} \]
= .060

\[df = 48 \]
Not significant

Test of significance of difference between mean SNS scores of the group II and IV.

\[SD = \sqrt{\frac{349.08+344.83}{(25-1)+(25-1)}} \]
= 3.80
SED = $3.80\sqrt{\frac{25+25}{25\times25}}$

= 1.07

t = $\frac{10.2-10.28}{1.07}$

= .074

df = 48

Not significant.

Test of significance of difference between mean SNS scores of the group III and IV.

$SD = \sqrt{\frac{708.94+344.83}{(25-1)+(25-1)}}$

= 4.68

$SED = \frac{4.68}{\sqrt{\frac{25+25}{25\times25}}}$

= 1.32

t = $\frac{10.28-10.28}{1.32}$

= 0

df = 48

Not significant.
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>1.88</td>
<td>3.53</td>
<td>3</td>
<td>12.4</td>
<td>153.76</td>
<td>5</td>
<td>10.04</td>
<td>100.80</td>
<td>18</td>
<td>-3.04</td>
<td>9.24</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1.88</td>
<td>3.53</td>
<td>21</td>
<td>-5.6</td>
<td>31.36</td>
<td>13</td>
<td>2.04</td>
<td>4.16</td>
<td>17</td>
<td>-2.04</td>
<td>4.16</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>-4.12</td>
<td>16.97</td>
<td>17</td>
<td>-1.6</td>
<td>2.56</td>
<td>21</td>
<td>-5.96</td>
<td>35.52</td>
<td>18</td>
<td>-3.04</td>
<td>9.24</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>-6.12</td>
<td>37.45</td>
<td>17</td>
<td>-1.6</td>
<td>2.56</td>
<td>16</td>
<td>-0.96</td>
<td>0.92</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1.88</td>
<td>0.77</td>
<td>18</td>
<td>-2.6</td>
<td>6.76</td>
<td>24</td>
<td>-8.96</td>
<td>80.28</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>-2.12</td>
<td>4.49</td>
<td>12</td>
<td>3.4</td>
<td>11.56</td>
<td>19</td>
<td>-3.96</td>
<td>15.68</td>
<td>5</td>
<td>9.96</td>
<td>99.20</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>-2.12</td>
<td>4.49</td>
<td>18</td>
<td>-2.6</td>
<td>6.76</td>
<td>13</td>
<td>2.04</td>
<td>4.16</td>
<td>17</td>
<td>-2.04</td>
<td>4.16</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>-4.12</td>
<td>16.97</td>
<td>18</td>
<td>-2.6</td>
<td>6.76</td>
<td>13</td>
<td>2.04</td>
<td>4.16</td>
<td>17</td>
<td>-2.04</td>
<td>4.16</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1.88</td>
<td>0.77</td>
<td>21</td>
<td>-5.6</td>
<td>31.36</td>
<td>14</td>
<td>1.04</td>
<td>1.08</td>
<td>14</td>
<td>0.96</td>
<td>0.92</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>3.88</td>
<td>15.05</td>
<td>12</td>
<td>3.4</td>
<td>11.56</td>
<td>14</td>
<td>1.04</td>
<td>1.08</td>
<td>15</td>
<td>0.04</td>
<td>0.0016</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4.88</td>
<td>23.81</td>
<td>15</td>
<td>4</td>
<td>16</td>
<td>20</td>
<td>-4.96</td>
<td>24.60</td>
<td>8</td>
<td>6.96</td>
<td>48.44</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>-1.12</td>
<td>0.014</td>
<td>16</td>
<td>-0.6</td>
<td>0.36</td>
<td>6</td>
<td>9.04</td>
<td>81.72</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0.88</td>
<td>0.77</td>
<td>16</td>
<td>-0.6</td>
<td>0.36</td>
<td>15</td>
<td>-1.96</td>
<td>3.84</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>5.88</td>
<td>34.57</td>
<td>16</td>
<td>-0.6</td>
<td>0.36</td>
<td>20</td>
<td>-4.96</td>
<td>24.60</td>
<td>20</td>
<td>-5.04</td>
<td>25.40</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.88</td>
<td>0.77</td>
<td>16</td>
<td>-0.6</td>
<td>0.36</td>
<td>17</td>
<td>-1.96</td>
<td>3.84</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>1.88</td>
<td>3.53</td>
<td>19</td>
<td>-3.6</td>
<td>12.96</td>
<td>15</td>
<td>-0.04</td>
<td>0.0016</td>
<td>19</td>
<td>-4.04</td>
<td>16.32</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>4.88</td>
<td>23.81</td>
<td>17</td>
<td>-1.6</td>
<td>2.56</td>
<td>17</td>
<td>-1.96</td>
<td>3.84</td>
<td>21</td>
<td>-6.04</td>
<td>36.48</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>-1.12</td>
<td>0.014</td>
<td>18</td>
<td>-2.6</td>
<td>6.76</td>
<td>19</td>
<td>-3.96</td>
<td>15.68</td>
<td>13</td>
<td>1.96</td>
<td>3.84</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>-1.12</td>
<td>0.014</td>
<td>13</td>
<td>2.4</td>
<td>5.76</td>
<td>15</td>
<td>-0.04</td>
<td>0.0016</td>
<td>14</td>
<td>0.96</td>
<td>0.92</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td>-1.12</td>
<td>0.014</td>
<td>10</td>
<td>5.4</td>
<td>29.16</td>
<td>20</td>
<td>-4.96</td>
<td>24.60</td>
<td>18</td>
<td>-3.04</td>
<td>9.24</td>
</tr>
<tr>
<td>21</td>
<td>19</td>
<td>-2.12</td>
<td>4.49</td>
<td>22</td>
<td>-6.6</td>
<td>43.56</td>
<td>19</td>
<td>-3.96</td>
<td>15.68</td>
<td>16</td>
<td>-1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>-6.12</td>
<td>37.45</td>
<td>18</td>
<td>-2.6</td>
<td>6.76</td>
<td>13</td>
<td>2.04</td>
<td>4.16</td>
<td>11</td>
<td>3.96</td>
<td>15.68</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>2.88</td>
<td>8.29</td>
<td>8</td>
<td>7.4</td>
<td>54.76</td>
<td>23</td>
<td>-7.96</td>
<td>63.36</td>
<td>15</td>
<td>0.04</td>
<td>0.0016</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>1.88</td>
<td>3.53</td>
<td>14</td>
<td>1.4</td>
<td>1.96</td>
<td>20</td>
<td>-4.96</td>
<td>24.60</td>
<td>10</td>
<td>4.96</td>
<td>24.60</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>-3.12</td>
<td>9.73</td>
<td>12</td>
<td>3.4</td>
<td>11.56</td>
<td>19</td>
<td>-3.96</td>
<td>15.68</td>
<td>17</td>
<td>-2.04</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Sum: 422 262.472 385 444 376 514.52 374 342.92
Mean: 16.88 15.4 15.04 14.96
\[SD = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{(N_1-1)+(N_2-1)}} \]

where:

- \(SD \) = Pooled standard deviation.
- \(x_1^2 \) = Sum of squares of deviation of scores from \(M_1 \).
- \(x_2^2 \) = Sum of squares of deviation of scores from \(M_2 \).
- \(N_1 \) = Number of subjects.
- \(N_2 \) = Number of subjects.

Computation of standard error of the difference between the two groups (SED).

\[SED = SD \times \sqrt{\frac{N_1+N_2}{N_1 \times N_2}} \]

since

\[t = \frac{M_1 - M_2}{SED} \]

where:

- \(M_1 \) = Mean of group one.
- \(M_2 \) = Mean of group two.
- \(SED \) = Standard error of the difference between the mean of two groups.
- \(df = (N_1-1)+(N_2-1) \)

By substitution:

\[SD = \sqrt{\frac{262.472+444}{(25-1)+(25-1)}} = 3.83 \]
SED = $3.83 \sqrt{\frac{25+25}{25 \times 25}}$

= 1.08

t = $\frac{16.88-15.4}{1.08}$

= 1.37

df = $(25-1)+(25-1)$

= 48

Not significant.

Test of significance of difference between mean SNS scores of the group I and III.

SD = $\sqrt{\frac{262.472+514.52}{(25-1)+(25-1)}}$

= 4.02

SED = $4.02 \sqrt{\frac{25+25}{25 \times 25}}$

= 1.13

t = $\frac{16.88-15.04}{1.13}$

= 1.62

df = 48

Not significant.

Test of significance of difference between mean SNS scores of the group I and IV.

SD = $\sqrt{\frac{262.472+342.92}{(25-1)+(25-1)}}$

= 3.55
\[
\text{SED} = 3.55 \sqrt{\frac{25 + 25}{25 	imes 25}}
\]
\[
= 1.00
\]
\[
t = \frac{16.88 - 14.96}{1.00}
\]
\[
= 1.92
\]
\[
\text{df} = 48
\]

Not significant.

Test of significance of difference between mean SNS scores of the group II and III.

\[
\text{SD} = \sqrt{\frac{444 + 514.52}{(25-1)+(25-1)}}
\]
\[
= 4.46
\]
\[
\text{SED} = 4.46 \sqrt{\frac{25 + 25}{25 	imes 25}}
\]
\[
= 1.26
\]
\[
t = \frac{15.4 - 15.04}{1.26}
\]
\[
= 2.85
\]
\[
\text{df} = 48
\]

Not significant.

Test of significance of difference between mean SNS scores of the group II and IV.

\[
\text{SD} = \sqrt{\frac{444 + 342.92}{(25-1)+(25-1)}}
\]
\[
= 4.04
\]
\[
\text{SED} = 4.04 \sqrt{\frac{25+25}{25 \times 25}} \\
= 1.14 \\
t = \frac{15.4-14.96}{1.14} \\
= .385 \\
\text{df} = 48
\]

Not significant

Test of significance of difference between mean SNS scores of the group III and IV.

\[
\text{SD} = \sqrt{\frac{514.52+342.92}{(25-1)+(25-1)}} \\
= 4.22 \\
\text{SED} = 4.22 \sqrt{\frac{25+25}{25 \times 25}} \\
= 1.19 \\
t = \frac{15.04-14.96}{1.19} \\
= .067 \\
\text{df} = 48
\]

Not significant.
<table>
<thead>
<tr>
<th>S.No.</th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th></th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th></th>
<th>x</th>
<th>M-x</th>
<th>x²</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>-2.92</td>
<td>8.52</td>
<td></td>
<td>8</td>
<td>3.8</td>
<td>14.44</td>
<td></td>
<td>9</td>
<td>2.04</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
<td>5</td>
<td>6.8</td>
<td>46.24</td>
<td></td>
<td>12</td>
<td>-0.96</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-2.92</td>
<td>79.56</td>
<td></td>
<td>10</td>
<td>1.8</td>
<td>3.24</td>
<td></td>
<td>9</td>
<td>2.04</td>
<td>4.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>3.08</td>
<td>9.48</td>
<td></td>
<td>14</td>
<td>-2.2</td>
<td>4.84</td>
<td></td>
<td>10</td>
<td>1.04</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>14.08</td>
<td>198.24</td>
<td></td>
<td>9</td>
<td>2.8</td>
<td>7.84</td>
<td></td>
<td>7</td>
<td>-4.04</td>
<td>16.32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>4.08</td>
<td>16.64</td>
<td></td>
<td>11</td>
<td>-0.8</td>
<td>0.64</td>
<td></td>
<td>18</td>
<td>-6.96</td>
<td>48.44</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>0.08</td>
<td>0.06</td>
<td></td>
<td>22</td>
<td>-10.2</td>
<td>104.04</td>
<td></td>
<td>13</td>
<td>-1.96</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>-6.92</td>
<td>47.88</td>
<td></td>
<td>14</td>
<td>-2.2</td>
<td>4.84</td>
<td></td>
<td>10</td>
<td>1.04</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
<td>10</td>
<td>1.8</td>
<td>3.24</td>
<td></td>
<td>6</td>
<td>5.04</td>
<td>25.40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>-2.92</td>
<td>8.52</td>
<td></td>
<td>7</td>
<td>4.8</td>
<td>23.04</td>
<td></td>
<td>10</td>
<td>1.04</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>-4.92</td>
<td>24.20</td>
<td></td>
<td>6</td>
<td>5.8</td>
<td>33.66</td>
<td></td>
<td>8</td>
<td>3.04</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>-2.92</td>
<td>0.08</td>
<td></td>
<td>16</td>
<td>-2.2</td>
<td>4.84</td>
<td></td>
<td>10</td>
<td>1.04</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>0.84</td>
<td>0.06</td>
<td></td>
<td>13</td>
<td>-1.2</td>
<td>1.44</td>
<td></td>
<td>7</td>
<td>-0.96</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-3.92</td>
<td>15.36</td>
<td></td>
<td>13</td>
<td>-1.2</td>
<td>1.44</td>
<td></td>
<td>8</td>
<td>3.04</td>
<td>9.24</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>5.08</td>
<td>25.80</td>
<td></td>
<td>16</td>
<td>-2.2</td>
<td>4.84</td>
<td></td>
<td>7</td>
<td>-0.96</td>
<td>16.32</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>5.08</td>
<td>25.80</td>
<td></td>
<td>15</td>
<td>-3.2</td>
<td>10.24</td>
<td></td>
<td>14</td>
<td>-2.96</td>
<td>8.76</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>5.08</td>
<td>25.80</td>
<td></td>
<td>15</td>
<td>-3.2</td>
<td>10.24</td>
<td></td>
<td>14</td>
<td>-2.96</td>
<td>8.76</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>-5.92</td>
<td>35.04</td>
<td></td>
<td>15</td>
<td>-3.2</td>
<td>10.24</td>
<td></td>
<td>14</td>
<td>-2.96</td>
<td>8.76</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
<td>9</td>
<td>2.8</td>
<td>7.84</td>
<td></td>
<td>14</td>
<td>-2.96</td>
<td>8.76</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>2.08</td>
<td>4.32</td>
<td></td>
<td>12</td>
<td>-0.2</td>
<td>0.4</td>
<td></td>
<td>10</td>
<td>1.04</td>
<td>10.08</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>4.08</td>
<td>16.64</td>
<td></td>
<td>17</td>
<td>-0.52</td>
<td>27.04</td>
<td></td>
<td>7</td>
<td>-0.96</td>
<td>16.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
<td>14</td>
<td>-2.2</td>
<td>4.84</td>
<td></td>
<td>17</td>
<td>-0.96</td>
<td>35.32</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>0.08</td>
<td>0.06</td>
<td></td>
<td>10</td>
<td>1.8</td>
<td>3.24</td>
<td></td>
<td>16</td>
<td>-0.96</td>
<td>24.60</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>0.08</td>
<td>0.06</td>
<td></td>
<td>9</td>
<td>2.8</td>
<td>7.84</td>
<td></td>
<td>17</td>
<td>-0.96</td>
<td>35.32</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
<td>10</td>
<td>1.8</td>
<td>3.24</td>
<td></td>
<td>18</td>
<td>-0.96</td>
<td>48.44</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>353</th>
<th>557.70</th>
<th>295</th>
<th>362.36</th>
<th>276</th>
<th>410.92</th>
<th>314</th>
<th>410.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>14.08</td>
<td>11.8</td>
<td>11.04</td>
<td>12.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I
II
III
IV
\[SD = \sqrt{\frac{x_1^2 + x_2^2}{(N_1-1)+(N_2-1)}} \]

where

- SD = Pooled standard deviation.
- \(x_1^2\) = sum of squares of deviation of scores from \(M_1\).
- \(x_2^2\) = Sum of squares of deviation of scores from \(M_2\).
- \(N_1\) = Number of subjects.
- \(N_2\) = Number of subjects.

Computation of standard error the difference between the two groups (SED).

\[SED = SD \times \sqrt{\frac{N_1 N_2}{N_1 + N_2}} \]

since

\[t = \frac{M_1 - M_2}{SED} \]

where:

- \(M_1\) = Mean of group one.
- \(M_2\) = Mean of group two.
- SED = Standard error the difference between the mean of two groups.

\[df = (N_1 - 1) + (N_2 - 1) \]

By substitution:

\[SD = \sqrt{\frac{557.70 + 362.36}{(25-1) + (25-1)}} \]

\[= 4.37 \]
\[
\text{SED} = 4.37 \times \sqrt{\frac{25+25}{25 \times 25}}
\]
\[
= 1.85
\]
\[
\text{df} = (25-1)+(25-1)
\]
\[
= 48
\]

Not significant.

Test of significance of difference between mean SNS scores of the group I and III.

\[
\text{SD} = \sqrt{\frac{557.70+410.92}{(25-1)+(25-1)}}
\]
\[
= 4.49
\]
\[
\text{SED} = 4.49 \sqrt{\frac{25+25}{25 \times 25}}
\]
\[
= 1.26
\]
\[
\text{t} = \frac{14.08-11.04}{1.26}
\]
\[
= 2.41
\]
\[
\text{df} = 48
\]

Significant at .05 level.

Test of significance of difference between mean SNS scores of the group I and IV.

\[
\text{SD} = \sqrt{\frac{557.70+410.07}{(25-1)+(25-1)}}
\]
\[
= 4.49
\]
\[
\text{SED} = 4.49 \sqrt{\frac{25+25}{25 \times 25}}
\]
\[
= 1.26
\]
\[
t = \frac{14.08 - 12.56}{1.26} = 1.20
\]
\[
df = 48
\]
Ngt significance.

Test of significance of difference between mean SNS scores of the group II and III:
\[
SD = \sqrt{\frac{362.36 + 410.92}{25-1} + \frac{362.36 + 410.92}{25-1}} = 4.01
\]
\[
SED = 4.01 \sqrt{\frac{25 + 25}{25 \times 25}} = 1.13
\]
\[
t = \frac{11.8 - 11.04}{1.13} = 0.672
\]
\[
df = 48
\]
Not significant.

Test of significance of difference between mean SNS scores of the group II and IV.
\[
SD = \sqrt{\frac{362.36 + 410.07}{25-1} + \frac{362.36 + 410.07}{25-1}} = 4.01
\]
\[
SED = 4.01 \sqrt{\frac{25 + 25}{25 \times 25}} = 1.13
\]
\[t = \frac{11.8 - 12.56}{1.13} \]
\[= 0.672 \]
\[f = 48 \]

Not significant.

Test of significance of difference between means SNS scores of the group III and IV.

\[SD = \sqrt{\frac{410.92 + 410.07}{(25-1) + (25-1)}} \]
\[= 4.13 \]

\[SED = 4.13 \sqrt{\frac{25 + 25}{25 \times 25}} \]
\[= 1.16 \]

\[t = \frac{11.04 - 12.56}{1.16} \]
\[= 1.31 \]

\[df = 48 \]

Not significant
TOO

Sociogenic Need-satisfaction scale
कृपया निम्नलिखित संगत विषय दीजिये।

<table>
<thead>
<tr>
<th>पता</th>
<th>जिसा</th>
</tr>
</thead>
<tbody>
<tr>
<td>नाम</td>
<td>प्राणाय या बहुरी</td>
</tr>
<tr>
<td>ख़ाना</td>
<td>वामिक स्तर</td>
</tr>
<tr>
<td>ट्यूटोरियल</td>
<td>पता</td>
</tr>
</tbody>
</table>

निदेश

1. इस प्रश्न के पहले दो प्रश्न पूछे गये हैं और प्रत्येक प्रश्न के साथ कुछ उत्तर दिये गये हैं।
2. प्रश्नों को व्याख्यात कीजिये और उत्तर दिये जाएं।
3. प्रश्नों का मूल इस प्रकार है—1 बहुत अधिक 2 अधिक 3 माध्यमिक 4 कम 5. बहुत कम 6 बिलकुल नहीं 4. प्रत्येक प्रश्न के लिये केवल एक ही उत्तर पर हो जाए। दूसरा अधिक नहीं। 4. सभी प्रश्नों के उत्तर दीजिये। 5. सभी उत्तर सही हो गये जावे। 6. जो उत्तर आपको पहले विषय में दिए गए प्रश्न को जोड़कर दीजिये।

1985
(M.A.)
MAPA
INSTITUTE OF ADVANCED STUDIES
MEERUT UNIVERSITY
MEERUT
(1)
लोग उसे पापी समझते हैं।

(2)
एक मुस्लिम बना करते हैं।

(3)
उसे भूरी के आगे बीच ही समर्पण कर बेंटता है।

(4)
उसे आगे खाली की पतन पढ़ता है।

(5)
लोग उसके भूरे रहते हैं।

(6)
उसे दिनांक भी में किसी की बीमा बचाते हैं।

(7)
मेरा मत दूसरों के बल्ले होता है।

(8)
वास्तव में दान देते हैं।

(9)
दूसरा दूसरा नस्ल करता नहीं सेवा के देखते हैं।

(10)
लोग मुस्किल बनाते हैं।

(11)
मैं प्राप्त लोगों पर विविधता का बेंटता है।

(12)
बाबु रामानंद पर बसावत सबसे शुरू शुरू बातों के माध्यम से।

(13)
लोगों के श्रेष्ठ रहते हुए भी में धरकर बचता है।

(14)
सभी में दूसरों के बारे में ना-नस्लता रहता है।

(15)
कपड़े बनाने मुस्किल देखा ना जाते हैं।

(16)
कपड़ों का यह बनाना देता है।

(17)
समय में भी प्रेम भरी आत्मा रहता है।

(18)
समय में वारता करता खोल में मुस्किल करते है।

(19)
पाला मुस्किल बनाता पर्यंत भी मुस्किल प्रयोग करते है।

(20)
मेरा बदल वार है जो दुःखों के लिए यह में बचने रहते हैं।

(21)
मैं प्राप्त बदल करता है।
<table>
<thead>
<tr>
<th>(२३) प्राय: लोग गुमसे खड़े हैं।</th>
<th>बहुत बाहरी</th>
<th>जबिक</th>
<th>साहारण</th>
<th>कम</th>
<th>बहुत</th>
<th>कम</th>
<th>बिल्कुल</th>
<th>नहीं!</th>
</tr>
</thead>
<tbody>
<tr>
<td>(२४) दुसरों के मुकाबले में हम हुआ बोले हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(२५) मैंने हूसी लोगों की सहायता के कारण किये हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(२६) प्राय: लोगों ने मुझे नीच समझा है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(२७) लोग मेरे व्यवहार से प्रसन्न हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(२८) किसी भी व्यक्ति के लिए लोग मुख पकड़ते हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(२९) बारात-बिचारों में मैंने सर्दबार बढ़े पत्ता को सामने रखा।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३०) लोगों के साथ बैठने से मेरा यह घटने लगता है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३१) मैं प्राय: लोगों के साथ कलोस्ता के पास बाता हूँ।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३२) दुसरों के मुकाबले में मैं किसी-किसी बिचारी को दूर देखा हूँ।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३३) दोस्तों के मेरी सहायता की है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३४) प्राय: लोग मेरी खुशई करते हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३५) प्राय: मुझे सोच उठाए है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३६) मैं प्राय: लोगों की प्राय पर बलात हूँ।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३७) दीन दुष्कर्मों के बाद मुझे रात दिया करते हैं।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३८) प्राय: मैं अपने काम बनाने करता हूँ।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(३९) दुसरों को मुझे बनाना मेरे बाये हाम का बेब है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(४०) मुझे दिल में पुरात बात बुझाने में दुसरों के मुकाबले बमय बनता है।</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>