CHAPTER-IV

SYNTHESIS OF PMP, MPMP DERIVATIVES OF
INDOLE-N-ACETIC ACID AND PHENYLOXALAMIC
ACID DERIVATIVES AS CASPASE-3 INHIBITORS
INTRODUCTION

Recently, a number of isatin-based inhibitors of caspase-3 and caspase-7 have been reported in literature33-36 indicating the importance of side chains I and II (Figure-1). 5-Pyrrolidinylsulfonyl isatins (III, $IC_{50} = 0.0025$ µM and IV, $IC_{50} = 0.03$ µM) represent a unique direction in the design of selective inhibitors for caspase-3 and -7. In contrast to previously reported inhibitors of caspase-3 and -7, these structures do not possess an acidic functionality which may bind in the primary aspartic acid binding pocket, $S_1$35-37. In addition, previous studies have shown that binding within the S_3 and S_4 subsites was most important for deriving selectivity between caspases.

The selectivity can be achieved from an interaction between the pyrrolidinylsulfonyl group of the inhibitor and the hydrophobic S_2 pocket of caspase-3. Despite the fact that distinguishing the roles of caspases-3 and -7 had been difficult, there has been recent evidence for the differential activation38,39 and sub cellular distribution40 of these two proteases in cells. A compound whichselectively inhibits only caspase-3 or caspase-7 would aid in characterizing the role that each protease plays during apoptosis41,42. Since the isatin sulfonamides derive their selectivity by binding in the S_2 subsite, caspase-3 or -7 selective inhibitors can be obtained through modification of the isatin sulfonamide core. The isatin sulfonamides block apoptosis in several cell-based systems, including human chondrocytes, which are used as a model for osteoarthritis. There was
an attenuation in cell-based activity relative to in vitro isolated caspase-3 activity for this class of inhibitors.

Figure-1

![Chemical structures](image)

On the basis of the above findings and available crystal structure of caspases, we have modified isatin core to indole and evaluated the inhibitory activity of caspase-3 in vitro. As expected, compound V (**Figure-1**) has shown an IC$_{50}$ = 20 μM, and this result encouraged for further optimization to have compound VI$_{43}$ (**Figure-1**) with an IC$_{50}$ = 2.4 μM. Accordingly designed and synthesized novel non peptidyl inhibitors derived from indole-N-acetic acid and oxalamic acid to study the role of pyrrolidine amides as caspase inhibitors.
PRESENT WORK

Since indolesulfonamides of phenoxyethyl pyrrolidine have shown good potency against caspase-3 activity, here in we have explored indole-N-acetamides of phenoxyethyl pyrrolidine (PMP) and 4-methoxy phenoxyethyl pyrrolidine (MPMP) derivatives. We also explored coupling of PMP and MPMP side chains with the oxalamic acids prepared in chapter-III (3a-h) and evaluated the caspase-3 activity. Overall 26 novel compounds were designed and synthesized in this series belong to two diversities as shown in Figure-2

Figure-2

4.1 Synthesis of Chiral phenoxyethylpyrrolidine and 4-methoxy phenoxyethylpyrrolidine

Synthesis of key intermediates 8 and 9 were carried out using commercially available L-proline using the synthetic procedures followed in literature33. Boc protection of the amino acid was carried out using aqueous NaOH to get intermediate 2, which upon
esterification gave intermediate 3. Reduction of methyl ester 3 with LAH gave alcohol 4, which in turn protected with tosyl chloride to obtain intermediate 5. Displacement of tosyl group with different phenols provided intermediates 6 and 7, which on hydrolysis with trifluoroacetic acid yielded corresponding phenoxyethyl pyrrolidines 8 and 9.

Scheme-1

Reagents and conditions: (i) Boc anhydride, aq NaOH, 0-25 °C, 4 h; (ii) CH₃I, K₂CO₃, DMF, 0-25 °C, 2 h; (iii) LAH, THF, -30 °C, 2 h; (iv) tosyl chloride, C₆H₆, rt, 15 h; (v) NaH, phenol (or 4-methoxy phenol), DMF, 90 °C, 4 h; (vi) CF₃COOH, anisole, CH₂Cl₂, rt, 2 h.

4.2 SYNTHESIS OF DIVERSITY-I

Synthesis of (S)-2-Oxo-2-(2-substituted phenoxyethyl pyrrolidin-1-yl)-N-substituted phenyl-acetamide

The novel oxalamides 10a-h and 11a-h were prepared by coupling of key intermediate 8 or 9 with different oxalamic acids (chapter-III, 3a-h) in presence of EDCI and HOBt with N, N-diisopropylethylamine as base.
Scheme-2

II-3a-h + \(\text{HN} \text{O} \text{R' a, R = 5-F} \)
\(\text{HN} \text{O} \text{R' b, R = 5-Br} \)
\(\text{HN} \text{O} \text{R' c, R = 5-Cl} \)
\(\text{HN} \text{O} \text{R' d, R = 5-OCH}_3 \)
\(\text{HN} \text{O} \text{R' e, R = 2-CH}_3 \)
\(\text{HN} \text{O} \text{R' f, R = 2-CH}_3 \)
\(\text{HN} \text{O} \text{R' g, R = 2-OCH}_3 \)
\(\text{HN} \text{O} \text{R' h, R = 2-F} \)
\(\text{HN} \text{O} \text{R' i, R = 2-F} \)

Reagent and conditions: (i) EDCI, HOBr, DIPEA, DMF, rt, 15 h.

4.3 SYNTHESIS OF DIVERSITY-II

Synthesis of 2-(substituted-indol-1-yl)-1-(2-substituted phenoxy)methyl pyrrolidin-1-yl)-ethanone

The novel indole acetamides 12a-e and 13a-e were prepared by coupling of key intermediate 8 or 9 with different indole-N-acetic acids (chapter-II 7a-e) in presence of EDCI and HOBr with N, N-diisopropylethylamine as base.

Scheme-3

II-7a-e + \(\text{HN} \text{O} \text{R' a, R = 5-F} \)
\(\text{HN} \text{O} \text{R' b, R = 5-Br} \)
\(\text{HN} \text{O} \text{R' c, R = 5-Cl} \)
\(\text{HN} \text{O} \text{R' d, R = 5-OCH}_3 \)
\(\text{HN} \text{O} \text{R' e, R = 2-CH}_3 \)
\(\text{HN} \text{O} \text{R' f, R = 2-CH}_3 \)
\(\text{HN} \text{O} \text{R' g, R = 2-OCH}_3 \)
\(\text{HN} \text{O} \text{R' h, R = 2-F} \)

Reagent and conditions: (i) EDCI, HOBr, DIPEA, DMF, rt, 15 h.
4.4 SPECTRAL DATA DISCUSSION

The compounds 10a-h, 11a-h, 12a-e and 13a-e obtained as pure single isomers and were characterized by \(^1\)H NMR spectrum, HPLC and LCMS analysis. For compounds 10a-h and 11a-h the \(^1\)H NMR spectrum can be explained as follows: \(\delta\) 9.4 (s, 1H, -NH), 7.65-7.50 (m, 2H, Aromatic), 7.15-7.0 (t, 2H, Aromatic), 6.90-6.75 (m, 4H, Aromatic), 5.45-4.50 (m, 1H, multiplet of chiral proton splitting into two halves may be because of rotomers), 4.25-3.90 (m, 4H, two protons of pyrrolidine ring and two protons of -CHCH\(_2\)O), 3.75 (s, 3H, 4-methoxy of MPMP and this peak will be absent in compounds 10a-h), 2.35-1.90 (m, 4H, pyrrolidine protons). The mass spectrum for major peak have shown mass in the form of m/z (M\(^+\)+1) for all compounds and the HPLC purity of all the compounds are between 96-99%.

For compounds 12a-e and 13a-e the \(^1\)H NMR spectrum can be explained as follows: \(\delta\) 7.30 (m, Aromatic protons), 6.55 (d, 1H, indolic proton), 4.8 (s, 2H, -NCH\(_2\)CO), 4.50 (m, 1H, chiral proton), 4.25-4.10 (m, 2H, protons of pyrrolidine ring CHCH\(_2\)O), 3.85 (s, 3H, 4-methoxy of MPMP and this peak will be absent in compounds 12a-e), 3.55 (m, 2H, pyrrolidine ring protons), 2.35-1.90 (m, 4H, pyrrolidine protons). The mass spectrum for major peak have shown mass in the form of m/z (M\(^+\)+1) for all compounds and the HPLC purity of all the compounds are between 96-98%.
4.5 BIOLOGICAL ACTIVITY

The assay was carried out as mentioned in chapter-II (2.5) and the reference compound for this assay was IDN-6556 and the values are denoted in table-I. Most of the compounds showed no inhibition at 10 µM in this series except following compounds.

Table-1: Evaluation of caspase-3 activity of synthesized compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>% inhibition @ 10 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>13a</td>
<td>58% (IC$_{50}$=9.9 µM)</td>
</tr>
<tr>
<td>13b</td>
<td>24% (IC$_{50}$<25 µM)</td>
</tr>
<tr>
<td>13c</td>
<td>14%</td>
</tr>
<tr>
<td>13d</td>
<td>7%</td>
</tr>
<tr>
<td>IDUN-6556</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Values are IC$_{50}$ (µM) expressed as the mean of two replicate determinations.

The novel phenoxyethyl pyrrolidine oxalamides, indole acetamides and 4-methoxy phenoxyethyl pyrrolidine oxalamides as well as indole acetamides have been synthesized and evaluated the caspase-3 inhibitory activity. Unfortunately most of the synthesized compounds have shown no inhibition at 10 µM except compound 13a which have shown 58% inhibition at 10 µM (IC$_{50}$ = 9.9 µM) followed by compound 13b with inhibitory activity of 24% at 10 µM (IC$_{50}$ = <25 µM). This indicates that pyrrolidinylsulfonyl group is playing a major role in activity of caspase-3 rather than pyrrolidinyl amide group.
CONCLUSION

The novel phenoxy methyl pyrrolidine and 4-methoxy phenoxy methyl pyrrolidine derivatives of oxalamic acid and indole-N-acetic acid have been synthesized and found that all the phenoxy methyl derivatives are inactive against caspase-3 enzyme at tested concentration. In terms of 4-methoxy phenoxy methyl pyrrolidine, all the oxalamic acid derivatives are inactive while some of the indole-N-acetic acid derivatives 13a and 13b have shown moderate activity against caspase-3.
4.6 EXPERIMENTALS

4.1 Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester (2): To a stirred solution of L-proline (8 g, 69.5 mmol) in 10% NaOH solution (80 mL) at 15 °C was added Boc anhydride (16.7 g, 76 mmol) and the mixture was stirred at room temperature for 4 h until TLC indicated completion of the reaction. The reaction mixture pH was adjusted to 5-7 with citric acid and extracted with ethyl acetate (2×100 mL). The combined organic layers was washed with saturated brine (100 mL) dried over Na$_2$SO$_4$ and evaporated in vacuum to afford 2 as white solid (14 g, 94%). Molecular formula: C$_{10}$H$_{17}$NO$_4$ (m/z = 215); LCMS: m/z = 216.1 (M$^+$+1).

Pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (3): To a stirred solution of 2 (14 g, 65 mmol) in dry DMF (30 mL) at 0 °C was added K$_2$CO$_3$ (27 g, 195 mmol) followed by methyl iodide (6.1 mL, 97 mmol) and stirred at room temperature for 2 h until TLC indicated completion of the reaction. The reaction mixture was diluted with cold water and extracted with ethyl acetate (2×100 mL). The combined organic layers were washed with saturated brine (100 mL) dried over Na$_2$SO$_4$ and evaporated in vacuum to afford 3 as pale yellow liquid (14.5 g, 97%). Molecular formula: C$_{11}$H$_{19}$NO$_4$ (m/z = 229); LCMS: m/z = 230.1 (M$^+$+1).

2-Hydroxymethyl pyrrolidine-1-carboxylic acid tert-butyl ester (4): To a stirred solution of LAH (3.6 g, 94.9 mmol) in dry THF (30 mL) at -30 °C was added 3 (14.5 g, 63 mmol) and stirred at same temperature
until TLC indicated that reaction was complete. The reaction mixture was quenched with 10% NaOH solution (10 mL) and filtered the solid and washed with ethyl acetate (100 mL). The combined filtrates were dried over Na$_2$SO$_4$ and evaporated in vacuum to afford 4 as colourless thick liquid (12.5 g, 98%). Molecular formula: C$_{10}$H$_{19}$NO$_3$ (m/z = 201); LCMS: m/z = 202.3 (M$^+$+1).

2-(Toluene-4-sulfonyloxymethyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (5): The compound 4 (12.5 g, 62 mmol) dissolved in dry DCM (100 mL) and added pyridine (37.5 mL) followed by p-toluene sulfonyl chloride (16.6 g, 87 mmol) and stirred at room temperature for 15 h until TLC indicated that reaction was complete. The reaction mixture was carefully acidified with 1N HCl and extracted with DCM (2×50 mL). The combined organic layers were dried over Na$_2$SO$_4$ and evaporated in vacuum and purified by column chromatography (15% EtOAc-hexane) to afford 5 as white crystals (20 g, 91%). Molecular formula: C$_{17}$H$_{25}$NO$_5$S (m/z = 355); LCMS: m/z = 356.1 (M$^+$+1).

2-(Phenoxy)methyl pyrrolidine-1-carboxylic acid tert-butyl ester (6): To a solution of NaH (2.3 g, 47.6 mmol) in dry DMF (25 mL) at 0 °C was added phenol (3.17 g, 33.8 mmol) and stirred for 30 min followed by addition of 5 (10 g, 28 mmol) in DMF (75 mL) and stirred at 100 °C for 3 h. The reaction monitored with TLC when it indicated the reaction was completed the reaction mixture was poured in ice water and extracted with ethyl acetate (2×50 mL). The combined organic layers were dried over Na$_2$SO$_4$ and evaporated in vacuum to
afford 6 as yellow oil (7 g, 91%). Molecular formula: C_{16}H_{23}NO_{3} (m/z = 277); LCMS: m/z = 278.2 (M^{+}+1).

\textbf{(S)-2-(Phenoxy)methyl pyrrolidine (8):} The compound 6 (7 g, 25 mmol) dissolved in dry DCM (70 mL) and added TFA (21 mL, 3 vol) and stirred at room temperature for 1 h until TLC indicated that reaction was complete. The reaction mixture was carefully basified with 10% NaOH solution and then extracted with DCM (2×100 mL). The combined organic layers were dried over Na_{2}SO_{4} and evaporated in vacuum to afford 8 as yellow oil (4 g, 91%). Molecular formula: C_{11}H_{15}NO (m/z = 177); LCMS: m/z = 178.1 (M^{+}+1); ¹H NMR (CDCl₃, 300 MHz): δ 7.27 (m, 2H), 6.91 (m, 3H), 3.88 (m, 2H), 3.55-3.45 (m, 1H), 3.05-2.94 (m, 2H), 2.36 (brs, 1H), 1.95-1.55 (m, 4H).

\textbf{2-(4-Methoxy phenoxy)methyl-pyrrolidine-1-carboxylic acid tert-butyl ester (7):} To a solution of NaH (2.3 g, 47.6 mmol) in dry DMF (25 mL) at 0 °C was added 4-methoxy phenol (4.2 g, 33.8 mmol) and stirred for 30 min followed by addition of 5 (10 g, 28 mmol) in DMF (75 mL) and stirred at 100 °C for 3 h. The reaction monitored with TLC when it indicated the reaction was completed the reaction mixture was poured in ice water and extracted with ethyl acetate (2×50 mL). The combined organic layers were dried over Na_{2}SO_{4} and evaporated in vacuum to afford 7 as yellow oil (8 g, 93%). Molecular formula: C_{17}H_{25}NO_{4} (m/z = 307); LCMS: m/z = 308.1 (M^{+}+1).
(S)-2-(4-Methoxy phenoxy methyl)-pyrrolidine (9): The compound 7 (8 g, 26 mmol) dissolved in dry DCM (70 mL) and added TFA (24 mL, 3 vol) and stirred at room temperature for 1 h until TLC indicated that reaction was complete. The reaction mixture was carefully basified with 10% NaOH solution and then extracted with DCM (2×100 mL). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuum to afford 9 as pale brown oil (5 g, 92%). Molecular formula: C₁₂H₁₇NO₂ (m/z = 207); LCMS: m/z = 208.1 (M⁺+1); ¹H NMR (CDCl₃, 300 MHz): δ 6.90-6.75 (m, 4H), 3.95-3.75 (m, 5H), 3.55-3.45 (m, 1H), 3.10-2.90 (m, 2H), 2.26 (brs, 1H), 2.0-1.65 (m, 4H).

4.2 (S)-N-(4-Fluoro phenyl)-2-oxo-2-(2-phenoxy methyl pyrrolidin-1-yl)-acetamide (10a): To a stirred solution of N-(4-fluoro phenyl)-oxalamic acid (183 mg, 1 mmol) in DMF (5 mL) was added DIPEA (0.52 mL, 3 mmol), HOBt (135 mg, 1 mmol), 8 (177 mg, 1 mmol) and cooled to 0 °C. Then added EDCI (191 mg, 1 mmol) and stirred at room temperature until TLC indicated that reaction was complete. The reaction mixture was poured in ice water and extracted with ethyl acetate (2×25 mL). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuum and purified by column chromatography (20% EtOAc-hexane) to afford 10a as colourless liquid (207 mg, 60%). Molecular formula: C₁₉H₁₉FN₂O₃ (m/z = 342); LCMS: m/z = 343.1 (M⁺+1); ¹H NMR (CDCl₃, 300 MHz): δ 9.45 (s, 1H), 7.65-7.55 (m, 2H), 7.35-7.20 (m, 3H), 7.10-6.85 (m, 4H), 5.45-4.55 (m,
(S)-2-Oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-N-p-tolyl-acetamide (10b): The compound 10b has been prepared according to the method described for the compound 10a employing the compound N-p-tolyl oxalamic acid (179 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10b which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (125 mg, 37%). Molecular formula: C$_{20}$H$_{22}$N$_2$O$_3$ (m/z = 338); LCMS: m/z = 339.1 (M$^+$+1); 1H NMR (DMSO-d$_6$, 300 MHz): δ 10.60 (brs, 1H, -NH), 7.65-7.55 (m, 2H), 7.35-7.1 (m, 4H), 7.05-6.80 (m, 3H), 4.90-4.80-4.35 (m, 1H), 4.20-3.90 (m, 2H), 3.80-3.70 (m, 1H), 3.60-3.50 (m, 1H), 2.30 (s, 3H), 2.15-1.85 (m, 4H); HPLC purity: 99%.

(S)-N-(4-Methoxy phenyl)-2-oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-acetamide (10c): The compound 10c has been prepared according to the method described for the compound 10a employing the compound N-(4-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10c which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as pale brown liquid (278 mg, 78%). Molecular formula: C$_{20}$H$_{22}$N$_2$O$_4$ (m/z = 354); LCMS: m/z = 355.1 (M$^+$+1); 1H NMR (CDCl$_3$, 300 MHz): δ 9.40 (s, 1H), 7.60-7.50 (d, J = 8.2 Hz, 2H), 7.35-7.20 (m, 2H), 7.0-6.85 (m, 5H), 5.45-4.55 (m, 1H), 4.30-4.0 (m, 3H), 3.80 (s, 3H), 3.80-3.70 (t, 1H), 2.30-1.95 (m, 4H); HPLC purity: 97%.
S-2-Oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-N-m-tolyl acetamide (10d): The compound 10d has been prepared according to the method described for the compound 10a employing the compound N-m-tolyl oxalamic acid (179 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10d which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (68 mg, 20%). Molecular formula: C_{20}H_{22}N_{2}O_{3} (m/z = 338); LCMS: m/z = 339.1 (M+1); ^{1}H NMR (CDCl_{3}, 300 MHz): δ 9.40 (s, 1H), 7.50-7.20 (m, 6H), 7.05-6.85 (m, 3H), 5.45-4.55 (m, 1H), 4.30-4.0 (m, 3H), 3.80-3.70 (t, 1H), 2.40 (s, 3H), 2.30-1.90 (m, 4H); HPLC purity: 98%.

S-N-(3-Methoxy phenyl)-2-oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-acetamide (10e): The compound 10e has been prepared according to the method described for the compound 10a employing the compound N-(3-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10e which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as pale yellow liquid (260 mg, 73%). Molecular formula: C_{20}H_{22}N_{2}O_{4} (m/z = 354); LCMS: m/z = 355.1 (M+1); ^{1}H NMR (CDCl_{3}, 300 MHz): δ 9.45 (s, 1H), 7.40-7.05 (m, 5H), 7.0-6.85 (m, 3H), 6.70 (d, J = 8.4 Hz, 1H), 5.45-4.55 (m, 1H), 4.30-4.0 (m, 3H), 3.85-3.70 (m, 4H), 2.30-1.95 (m, 4H); HPLC purity: 99%.

S-2-Oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-N-o-tolyl acetamide (10f): The compound 10f has been prepared according to the method described for the compound 10a employing the compound N-o-tolyl
oxalamic acid (179 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10f which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as low melting solid (125 mg, 37%). Molecular formula: C₂₀H₂₂N₂O₃ (m/z = 338); LCMS: m/z = 339.1 (M⁺ +1); ¹H NMR (CDCl₃, 300 MHz): δ 9.55-9.40 (brd, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.35-6.85 (m, 8H), 5.45-4.55 (m, 1H), 4.30-4.0 (m, 3H), 3.80-3.70 (t, 1H), 2.35 (s, 3H), 2.30-1.95 (m, 4H); HPLC purity: 98%.

(S)-N-(2-Methoxy phenyl)-2-oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-acetamide (10g): The compound 10g has been prepared according to the method described for the compound 10a employing the compound N-(2-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10g which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as pale yellow liquid (136 mg, 38%). Molecular formula: C₂₀H₂₂N₂O₄ (m/z = 354); LCMS: m/z = 355.1 (M⁺ +1); ¹H NMR (CDCl₃, 300 MHz): δ 10.00 (s, 1H), 8.40 (d, J = 3.0 Hz, 1H), 7.40-7.20 (m, 2H), 7.20-6.85 (m, 6H), 5.45-4.55 (m, 1H), 4.30-3.90 (m, 6H), 3.80-3.70 (t, 1H), 2.30-1.95 (m, 4H); HPLC purity: 99%.

(S)-N-(2-Fluoro phenyl)-2-oxo-2-(2-phenoxyethyl pyrrolidin-1-yl)-acetamide (10h): The compound 10h has been prepared according to the method described for the compound 10a employing the compound N-(2-fluoro phenyl)-oxalamic acid (183 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 10h which was purified by column
chromatography (20% EtOAc-hexane) to afford desired compound as pale yellow liquid (135 mg, 39%). Molecular formula: C_{19}H_{19}FN_{2}O_{3} (m/z = 342); LCMS: m/z = 343.2 (M^+1); ^1H NMR (CDCl_{3}, 300 MHz): δ 9.70 (s, 1H), 8.35 (t, 1H), 7.35-7.05 (m, 5H), 7.0-6.85 (m, 3H), 5.45-4.55 (m, 1H), 4.30-4.0 (m, 3H), 3.80-3.70 (t, 1H), 2.30-1.95 (m, 4H); HPLC purity: 96%.

4.3 (S)-2-(5-Fluoro indol-1-yl)-1-(2-phenoxyethyl pyrrolidin-1-yl)-ethanone (12a): The compound 12a has been prepared according to the method described for the compound 10a employing the compound (5-fluoro indol-1-yl)-acetic acid (193 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 12a which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as cream colour solid (199 mg, 56%). Molecular formula: C_{21}H_{21}FN_{2}O_{2} (m/z = 352); LCMS: m/z = 353.1 (M^+1); mp: 122-124 °C; ^1H NMR (CDCl_{3}, 300 MHz): δ 7.40-7.10 (m, 5H), 7.0-6.85 (m, 4H), 6.50 (d, J = 8.2 Hz, 1H), 4.80 (s, 2H), 4.50 (m, 1H), 4.20-4.10 (m, 2H), 3.55-3.40 (m, 2H), 2.30-1.95 (m, 4H); HPLC purity: 98%.

(S)-2-(5-Bromo indol-1-yl)-1-(2-phenoxyethyl pyrrolidin-1-yl)-ethanone (12b): The compound 12b has been prepared according to the method described for the compound 10a employing the compound (5-bromo indol-1-yl)-acetic acid (254 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 12b which was purified by column chromatography (50% EtOAc-hexane) to afford desired compound as pale yellow solid (246 mg, 59%). Molecular formula: C_{21}H_{21}BrN_{2}O_{2}
(m/z = 413); LCMS: m/z = 413.0 (M⁺+1); mp: 109-111 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.75 (s, 1H), 7.35-7.20 (m, 3H), 7.15-7.05 (m, 2H), 7.0-6.85 (m, 3H), 6.50 (d, J = 8.1 Hz, 1H), 4.80 (s, 2H), 4.50 (m, 1H), 4.20-4.10 (m, 2H), 3.55-3.40 (m, 2H), 2.30-1.95 (m, 4H); HPLC purity: 98%.

(S)-2-(5-Chloro indol-1-yl)-1-(2-phenoxy methyl pyrrolidin-1-yl)-ethanone (12c): The compound 12c has been prepared according to the method described for the compound 10a employing the compound (5-chloro indol-1-yl)-acetic acid (209 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 12c which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as white solid (234 mg, 63%). Molecular formula: C₂₁H₂₁ClN₂O₂ (m/z = 368); LCMS: m/z = 369.0 (M⁺+1); mp: 129-131 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.60 (s, 1H), 7.40-7.20 (m, 2H), 7.20-7.0 (m, 3H), 7.0-6.85 (m, 3H), 6.50 (d, J = 8.3 Hz, 1H), 4.80 (s, 2H), 4.50 (m, 1H), 4.20-4.10 (m, 2H), 3.55-3.40 (m, 2H), 2.30-1.95 (m, 4H); HPLC purity: 96%.

(S)-2-(5-Methoxy indol-1-yl)-1-(2-phenoxy methyl pyrrolidin-1-yl)-ethanone (12d): The compound 12d has been prepared according to the method described for the compound 10a employing the compound (5-methoxy indol-1-yl)-acetic acid (205 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 12d which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as pale yellow liquid (276 mg, 76%). Molecular formula: C₂₂H₂₄N₂O₃ (m/z
= 364); LCMS: m/z = 365.1 (M⁺+1); ¹H NMR (DMSO-d₆, 300 MHz): δ 7.40-7.20 (m, 4H), 7.10-6.90 (m, 4H), 6.70 (d, J = 8.1 Hz, 1H), 6.35 (d, J = 3.1 Hz, 1H), 5.05 (s, 2H), 4.30-4.20 (m, 1H), 4.15-4.05 (m, 1H), 3.95 (m, 1H), 3.80 (s, 3H), 3.70-3.60 (m, 2H) 2.20-1.95 (m, 4H); HPLC purity: 97%.

(S)-2-(2-Methyl indol-1-yl)-1-(2-phenoxymethyl pyrrolidin-1-yl)-ethanone (12e): The compound 12e has been prepared according to the method described for the compound 10a employing the compound (5-methyl indol-1-yl)-acetic acid (189 mg, 1 mmol) and 8 (177 mg, 1 mmol) to afford the crude product 12e which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as cream colour solid (169 mg, 48%). Molecular formula: C₂₂H₂₄N₂O₂ (m/z = 348); LCMS: m/z = 349.1 (M⁺+1); mp : 67-70 °C; ¹H NMR (DMSO-d₆, 300 MHz): δ 7.45-7.25 (m, 4H), 7.10-6.90 (m, 5H), 6.20 (s, 1H), 5.0 (s, 2H), 4.30-4.20 (m, 1H), 4.15-4.05 (m, 1H), 3.95 (m, 1H), 3.80-3.65 (m, 2H), 2.30 (s, 3H), 2.20-1.95 (m, 4H); HPLC purity: 97%.

4.2 (S)-N-(4-Fluoro phenyl)-2-[2-(4-methoxy phenoxymethyl)pyrrolidin-1-yl]-2-oxo acetamide (11a): The compound 11a has been prepared according to the method described for the compound 10a employing the compound N-(4-fluoro phenyl)-oxalamic acid (183 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11a which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (250 mg, 67%). Molecular formula: C₂₀H₂₁FN₂O₄ (m/z = 372); LCMS: m/z = 373.1 (M⁺+1); ¹H
NMR (CDCl₃, 300 MHz): δ 9.40 (s, 1H), 7.65-7.50 (m, 2H), 7.10-7.0 (t, 2H), 6.90-6.75 (m, 4H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.80-3.70 (m, 4H), 2.30-1.95 (m, 4H); HPLC purity: 97%.

(S)-2-[(4-Methoxy phenoxymethyl)-pyrrolidin-1-yl]-2-oxo-N-p-tolyl acetamide (11b): The compound 11b has been prepared according to the method described for the compound 10a employing the compound N-p-tolyl oxalamic acid (179 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11b which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (150 mg, 41%). Molecular formula: C₂₁H₂₄N₂O₄ (m/z = 368); LCMS: m/z = 369.1 (M+1); ¹H NMR (CDCl₃, 300 MHz): δ 9.40 (s, 1H), 7.35-7.45 (d, J = 8.0 Hz, 2H), 7.20-7.10 (d, J = 8.2 Hz, 2H), 6.90-6.75 (m, 4H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.80-3.70 (m, 4H), 2.35 (s, 3H), 2.30-1.95 (m, 4H); HPLC purity: 97%.

(S)-2-[(4-Methoxy phenoxymethyl)-pyrrolidin-1-yl]-N-(4-methoxy phenyl)-2-oxo acetamide (11c): The compound 11c has been prepared according to the method described for the compound 10a employing the compound N-(4-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11c which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as white solid (240 mg, 62%). Molecular formula: C₂₁H₂₄N₂O₅ (m/z = 384); LCMS: m/z = 385.1 (M+1); mp: 126-128 °C; ¹H NMR (CDCl₃, 300 MHz): δ 9.35 (s, 1H), 7.60-7.50 (d, J
215

= 8.3 Hz, 2H), 6.95-6.75 (m, 6H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.85-3.70 (m, 7H), 2.30-1.95 (m, 4H); HPLC purity: 98%.

(S)-2-[2-(4-Methoxy phenoxymethyl)-pyrrolidin-1-yl]-2-oxo-N-m-toly1 acetamide (11d): The compound 11d has been prepared according to the method described for the compound 10a employing the compound N-m-tolyl oxalamic acid (179 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11d which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (158 mg, 43%). Molecular formula: C21H24N2O4 (m/z = 368); LCMS: m/z = 369.0 (M+1); 1H NMR (CDCl3, 300 MHz): δ 9.40 (s, 1H), 7.50-7.35 (m, 2H), 7.30-7.20 (m, 1H), 7.0-6.80 (m, 5H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.80-3.70 (m, 4H), 2.35 (s, 3H), 2.30-1.95 (m, 4H); HPLC purity: 96%.

(S)-2-[2-(4-Methoxy phenoxymethyl)-pyrrolidin-1-yl]-N-(3-methoxy phenyl)-2-oxo-acetamide (11e): The compound 11e has been prepared according to the method described for the compound 10a employing the compound N-(3-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11e which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (310 mg, 81%). Molecular formula: C21H24N2O5 (m/z = 384); LCMS: m/z = 385.1 (M+1); 1H NMR (CDCl3, 300 MHz): δ 9.45 (s, 1H), 7.40-7.30 (m, 2H), 7.10 (d, J = 8.1 Hz, 1H), 6.95-6.70 (m, 5H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.85-3.70 (m, 7H), 2.30-1.95 (m, 4H); HPLC purity: 97%.
(S)-2-[2-(4-Methoxy phenoxy)methyl]-2-oxo-N-o-tolyl acetamide (11f): The compound 11f has been prepared according to the method described for the compound 10a employing the compound N-o-tolyl oxalamic acid (179 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11f which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (186 mg, 50%). Molecular formula: C_{21}H_{24}N_{2}O_{4} (m/z = 368); LCMS: m/z = 369.2 (M+1); 1H NMR (CDCl$_3$, 300 MHz): δ 9.45 (s, 1H), 8.0 (d, J = 8.1 Hz, 1H), 7.30-7.05 (m, 3H), 6.95-6.75 (m, 4H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.80-3.70 (m, 4H), 2.35 (s, 3H), 2.30-1.95 (m, 4H); HPLC purity: 96%.

(S)-2-[2-(4-Methoxy phenoxy)methyl]-2-oxo-N-(2-methoxy phenyl)-acetamide (11g): The compound 11g has been prepared according to the method described for the compound 10a employing the compound N-(2-methoxy phenyl)-oxalamic acid (195 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11g which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (135 mg, 35%). Molecular formula: C_{21}H_{24}N_{2}O_{5} (m/z = 384); LCMS: m/z = 385.1 (M+1); 1H NMR (CDCl$_3$, 300 MHz): δ 9.95 (s, 1H), 8.40-8.30 (m, 1H), 7.15-7.05 (t, 1H), 7.0-6.75 (m, 6H), 5.40-4.50 (m, 1H), 4.25-4.10 (m, 2H), 4.05-3.90 (m, 4H), 3.80-3.70 (m, 4H), 2.30-1.95 (m, 4H); HPLC purity: 97%.
(S)-N-(2-Fluoro phenyl)-2-[2-(4-methoxy phenoxy)methyl]-pyrrolidin-1-yl]-2-oxo acetamide (11h): The compound 11h has been prepared according to the method described for the compound 10a employing the compound N-(2-fluoro phenyl)-oxalamic acid (183 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 11h which was purified by column chromatography (20% EtOAc-hexane) to afford desired compound as colourless liquid (250 mg, 67%). Molecular formula: C_{20}H_{21}FN_{2}O_{4} (m/z = 372); LCMS: m/z = 373.0 (M\(^{+}\)+1); \(^{1}\)H NMR (CDCl\(_{3}\), 300 MHz): δ 9.70 (s, 1H), 8.40-8.30 (m, 1H), 7.20-7.05 (m, 3H), 6.95-6.80 (m, 4H), 5.40-4.50 (m, 1H), 4.25-3.95 (m, 3H), 3.80-3.70 (m, 4H), 2.30-1.95 (m, 4H); HPLC purity: 96%.

4.3 (S)-2-(5-Fluoro indol-1-yl)-1-[2-(4-methoxy phenoxy)methyl]-pyrrolidin-1-yl]-ethanone (13a): The compound 13a has been prepared according to the method described for the compound 10a employing the compound (5-fluoro indol-1-yl)-acetic acid (193 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 13a which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as pale yellow liquid (115 mg, 30%). Molecular formula: C_{22}H_{23}FN_{2}O_{3} (m/z = 382); LCMS: m/z = 383.1 (M\(^{+}\)+1); \(^{1}\)H NMR (CDCl\(_{3}\), 300 MHz): δ 7.30-7.10 (m, 3H), 6.95-6.75 (m, 5H), 6.50 (d, J = 8.1 Hz, 1H), 4.80 (s, 2H), 4.50-4.40 (m, 1H), 4.15-4.05 (m, 2H), 3.80 (s, 3H), 3.55-3.40 (m, 2H), 2.25-1.95 (m, 4H); HPLC purity: 97%.
(S)-2-(5-Bromo indol-1-yl)-1-[2-(4-methoxy phenoxymethyl)-pyrrolidin-1-yl]-ethanone (13b): The compound 13b has been prepared according to the method described for the compound 10a employing the compound (5-bromo indol-1-yl)-acetic acid (254 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 13b which was purified by column chromatography (50% EtOAc-hexane) to afford desired compound as pale yellow liquid (80 mg, 18%). Molecular formula: C_{22}H_{23}BrN_{2}O_{3} (m/z = 443); LCMS: m/z = 444.8 (M^{+}+2); {1}H NMR (CDCl_{3}, 300 MHz): δ 7.75 (s, 1H), 7.30-7.05 (m, 3H), 6.90-6.75 (m, 4H), 6.50 (d, J = 8.3 Hz, 1H), 4.80 (s, 2H), 4.50-4.40 (m, 1H), 4.15-4.05 (m, 2H), 3.80 (s, 3H), 3.55-3.40 (m, 2H), 2.25-1.95 (m, 4H); HPLC purity: 97%.

(S)-2-(5-Chloro indol-1-yl)-1-[2-(4-methoxy phenoxymethyl)-pyrrolidin-1-yl]-ethanone (13c): The compound 13c has been prepared according to the method described for the compound 10a employing the compound (5-chloro indol-1-yl)-acetic acid (209 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 13c which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as pale yellow liquid (90 mg, 23%). Molecular formula: C_{22}H_{23}ClN_{2}O_{3} (m/z = 398); LCMS: m/z = 398.9 (M^{+}+1); {1}H NMR (CDCl_{3}, 300 MHz): δ 7.60 (s, 1H), 7.20-7.05 (m, 3H), 6.90-6.75 (m, 4H), 6.50 (d, J = 8.0 Hz, 1H), 4.80 (s, 2H), 4.50-4.40 (m, 1H), 4.15-4.05 (m, 2H), 3.80 (s, 3H), 3.55-3.40 (m, 2H), 2.25-1.95 (m, 4H); HPLC purity: 96%.
(S)-2-(5-Methoxy indol-1-yl)-1-[2-(4-methoxy phenoxy)methyl]-pyrrolidin-1-yl]-ethanone (13d): The compound 13d has been prepared according to the method described for the compound 10a employing the compound (5-methoxy indol-1-yl)-acetic acid (205 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 13d which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as pale brown liquid (95 mg, 24%). Molecular formula: C_{23}H_{26}N_{2}O_{4} (m/z = 394); LCMS: m/z = 395.1 (M^+1); ^1H NMR (CDCl_3, 300 MHz): δ 7.20-7.0 (m, 3H), 6.90-6.75 (m, 5H), 6.48 (d, J = 8.1 Hz, 1H), 4.80 (s, 2H), 4.50-4.40 (m, 1H), 4.15-4.05 (m, 2H), 3.90-3.70 (m, 6H), 3.50-3.40 (m, 2H), 2.25-1.95 (m, 4H); HPLC purity: 96%.

(S)-1-[2-(4-Methoxy phenoxy)methyl]-pyrrolidin-1-yl]-2-(2-methyl indol-1-yl)-ethanone (13e): The compound 13e has been prepared according to the method described for the compound 10a employing the compound (2-methyl indol-1-yl)-acetic acid (189 mg, 1 mmol) and 9 (207 mg, 1 mmol) to afford the crude product 13e which was purified by column chromatography (40% EtOAc-hexane) to afford desired compound as cream colour solid (66 mg, 17%). Molecular formula: C_{23}H_{26}N_{2}O_{3} (m/z = 378); LCMS: m/z = 379.1 (M^+1); mp : 107-109 °C; ^1H NMR (CDCl_3, 300 MHz): δ 7.50 (d, J = 7.8 Hz, 1H), 7.20-7.0 (m, 3H), 6.90-6.75 (m, 4H), 6.30 (s, 1H), 4.80 (s, 2H), 4.50-4.40 (m, 1H), 4.15-4.05 (m, 2H), 3.80 (s, 3H), 3.55-3.45 (m, 2H), 2.40 (s, 3H), 2.25-1.95 (m, 4H); HPLC purity: 97%.
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Area (mAU x min)</th>
<th>% Area</th>
<th>Height (mAU)</th>
<th>% Height</th>
<th>Width (min)</th>
<th>Baseline Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6455</td>
<td>2748.2610</td>
<td>1.3702</td>
<td>348.9267</td>
<td>1.7217</td>
<td>0.2087</td>
<td>Base to Base</td>
</tr>
<tr>
<td>1.3220</td>
<td>5220.6371</td>
<td>2.6028</td>
<td>124.0671</td>
<td>0.6136</td>
<td>0.4487</td>
<td>Base to Base</td>
</tr>
<tr>
<td>2.4653</td>
<td>1.9238e5</td>
<td>95.9010</td>
<td>1.9673e4</td>
<td>97.3005</td>
<td>0.5200</td>
<td>Base to Base</td>
</tr>
<tr>
<td>3.4767</td>
<td>252.6896</td>
<td>0.1260</td>
<td>73.6309</td>
<td>0.3642</td>
<td>0.1133</td>
<td>Base to Base</td>
</tr>
</tbody>
</table>

MASS spectrum of 10a
\(^1\)H NMR spectrum of 11b
MASS spectrum of 11b
Peak List for "TWC of DAD Spectral Data: from Sample 1 (IN1958-081P) of Data20040927.wiff"

<table>
<thead>
<tr>
<th>Rank</th>
<th>Time (min)</th>
<th>Area (m AU x min)</th>
<th>Area %</th>
<th>Height (m AU)</th>
<th>Height %</th>
<th>Width (min)</th>
<th>Baseline Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2667</td>
<td>3256.8151</td>
<td>0.3909</td>
<td>142.7591</td>
<td>0.1637</td>
<td>0.3467</td>
<td>Base to Base</td>
</tr>
<tr>
<td>2</td>
<td>1.7523</td>
<td>1999.4714</td>
<td>0.2400</td>
<td>326.9222</td>
<td>0.3748</td>
<td>0.2067</td>
<td>Base to Base</td>
</tr>
<tr>
<td>3</td>
<td>2.0731</td>
<td>8.2778e5</td>
<td>99.3691</td>
<td>8.6739e4</td>
<td>99.4615</td>
<td>0.5867</td>
<td>Base to Base</td>
</tr>
</tbody>
</table>

MASS spectrum of 11c
1H NMR spectrum of 12c
Sample ID: 13

Sample Name: IN1958-075P

Acq. File: Data16040916.wiff

Acq. Date: Thursday, April 16, 2009

Polarity/Scan Type: Positive Q1 MS

TIC of +Q1 from Sample 1 ([IN1958-075P] of Data16040916.wiff (Turbo Spray))

Max. 3.4e8 cps

+Q1 2.819 to 2.986 min from Sample 1 ([IN1958-075P] of Data16040916.wiff (Turbo Spray)), su...

Max. 5.0e6 cps

TIC of DAD Spectral Data: from Sample 1 ([IN1958-075P] of Data16040916.wiff)

Max. 5.9e4 mAU

Peak List for "TIC of DAD Spectral Data: from Sample 1 ([IN1958-075P] of Data16040916.wiff)"

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Area (mAU x min)</th>
<th>% Area</th>
<th>Height (mAU)</th>
<th>% Height</th>
<th>Width (min)</th>
<th>Baseline Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4093</td>
<td>7070.8599</td>
<td>2.0785</td>
<td>119.5706</td>
<td>0.2116</td>
<td>0.5467</td>
<td>Base to Base</td>
</tr>
<tr>
<td>2.9057</td>
<td>3.3095e5</td>
<td>97.2870</td>
<td>5.5688e4</td>
<td>98.8853</td>
<td>0.4000</td>
<td>Base to Base</td>
</tr>
<tr>
<td>3.7134</td>
<td>1273.0894</td>
<td>0.3742</td>
<td>302.8245</td>
<td>0.5359</td>
<td>0.1667</td>
<td>Base to Base</td>
</tr>
<tr>
<td>3.8852</td>
<td>885.3523</td>
<td>0.2603</td>
<td>207.6076</td>
<td>0.3673</td>
<td>0.1400</td>
<td>Base to Base</td>
</tr>
</tbody>
</table>

MASS spectrum of 12e
Sample ID: 24
Acq. File: Data24040933.wiff
Acq. Date: Friday, April 26, 2009

TIC of +Q1 from Sample 1 (IN1958-087P) of Data24040933.wiff (Turbo Spray)

Max 2.768 cps

TIC of +Q1 2.184 to 2.552 min from Sample 1 (IN1958-087P) of Data24040933.wiff (Turbo Spray)

Max 3.565 cps

TIC of +Q2 from Sample 1 (IN1958-087P) of Data24040933.wiff (Turbo Spray)

Max 4.904 mAU

Peak List for TWC of DAD Spectral Data from Sample 1 (IN1958-087P) of Data24040933.wiff

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Area (mAU x min)</th>
<th>% Area</th>
<th>Height (mAU)</th>
<th>% Height</th>
<th>Width (min)</th>
<th>Baseline Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0112</td>
<td>1.5205e4</td>
<td>3.3598</td>
<td>3321.7955</td>
<td>6.6824</td>
<td>0.1600</td>
<td>Base to Base</td>
</tr>
<tr>
<td>2.3349</td>
<td>4.3736e5</td>
<td>96.6402</td>
<td>4.4943e4</td>
<td>93.1176</td>
<td>0.4667</td>
<td>Base to Base</td>
</tr>
</tbody>
</table>

MASS spectrum of 13a
$^{1} \text{H NMR spectrum of 13c}$
Sample ID: 27
Sample Name: IM1958-088P
Polarity/Scan Type: Positive Q1 MS
Acq. File: Data24Q040934.wiff
Acq. Date: Friday, April 24, 2009

TIC of +Q1 from Sample 1 (IN1958-088P) of Data24Q040934.wiff (Turbo Spray)
Max 3.068 cps

+Q1: 2.652 to 2.986 min from Sample 1 (IN1958-088P) of Data24Q040934.wiff (Turbo Spray), su...
Max 3.268 cps

TWC of DAD Spectral Data: from Sample 1 (IN1958-088P) of Data24Q040934.wiff
Max 5.164 mAU

Peak List for "TWC of DAD Spectral Data: from Sample 1 (IN1958-088P) of Data24Q040934.wiff"

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Area (mAU x min)</th>
<th>% Area</th>
<th>Height (mAU)</th>
<th>% Height</th>
<th>Width (min)</th>
<th>Baseline Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0277</td>
<td>4.4429</td>
<td>4251.0783</td>
<td>7.7871</td>
<td>0.1200</td>
<td>Base to Base</td>
</tr>
<tr>
<td>2</td>
<td>3.3238e5</td>
<td>95.5571</td>
<td>5.0340e4</td>
<td>92.2129</td>
<td>0.3000</td>
<td>Base to Base</td>
</tr>
</tbody>
</table>

MASS spectrum of 13c