TABLE OF CONTENT

CHAPTER 1: Introduction

1.1. Ozone chemistry in the stratosphere

1.2. Tropospheric ozone
 1.2.1. Photochemical sources and sinks of tropospheric ozone
 1.2.2. Dry deposition at earth's surface
 1.2.3. Transport of O_3 from stratosphere
 1.2.4 UTLS (Upper Troposphere Lower Stratosphere region)
 1.2.5 Budget of troposphere ozone

1.3. Impact of ozone on the biological system

1.4. Role of dynamics
 1.4.1. Transport
 1.4.2 Advection (Long Range Transport)
 1.4.3 Convection

1.5. Indian scenario

1.6. Objectives and brief outline of thesis

CHAPTER 2: Measurement techniques and instrumentation

2.1. Ozone observations using balloon-borne sensor

2.2. Components of a balloon flight

2.3. Ozone observations using ECC sonde
 2.3.1. Operating principle
 2.3.2. Estimation of ozone
CHAPTER 3: Seasonal variation in the vertical distribution of ozone and effect of meteorology over Ahmedabad
3.7 Seasonal variations of distribution of ozone 53
3.8 Variation of total ozone content over Ahmedabad 56
3.9 Tropospheric column ozone 59
3.10 Comparison with TOMS derived tropospheric column ozone 62
3.11 Vertical description of tropospheric ozone 63
3.12 Vertical distributions of ozone, temperature and relative humidity during different seasons 64
3.13 Stratospheric-Tropospheric Exchange over Ahmedabad 69
3.14 Day to day variability in tropospheric ozone – A case study 71
 3.14.1 Case 1- Ozone distribution on 9 March, 2005 71
 3.14.2 Case 2- Ozone distribution on 20 April, 2005 74
3.15 Summary 76

Chapter 4: Distribution of ozone and other trace gases over the Indo-Gangetic Plain during a winter month 78

4.1 Significance of the study site 79
4.2 Site description 80
4.3 Experimental details 80
4.4 Metrological conditions, back trajectory and potential vorticity analysis 82
4.5 Result and description 84
 4.5.1 Time and series analysis 84
 4.5.2 Frequencies distribution 85
4.6 Diurnal variations in ozone and its precursors 85
 4.6.1 Foggy days 85
 4.6.2 Clear days 87
4.7 Vertical distributions of ozone 89
4.7.1 Average vertical profiles of ozone and temperature over Kanpur

4.7.2 Observed features

4.7.3 Case 1: Higher ozone concentration in the lower troposphere

4.7.4 Case 2: Ozone intrusion from the stratosphere

4.7.5 Case 3: Lower ozone concentration

4.8 Comparison with MATCH-MPIC model

4.8.1 Surface ozone

4.8.2 Vertical distribution of ozone

4.9 Summary of the results

CHAPTER 5: Distribution of ozone over the marine regions surrounding India

5.1 Cruise track

5.2 Experimental details

5.3 Meteorology

5.3.1 General wind patterns

5.3.2 Variation of meteorological parameters

5.4 Variation of trace gases during ICARB

5.5 Possible loss of ozone due to dust

5.6 Vertical distribution ozone over the Bay of Bengal

5.6.1 Variation of integrated total and tropospheric ozone

5.6.2 Low ozone in the troposphere on 30 March, 2006

5.6.3 Back trajectory analysis

5.6.4 Comparison with a photochemical model
5.6.5 Distribution of ozone at different pressure levels 125

5.7. Vertical distribution of ozone over the Arabian Sea 126

5.7.1 Variation of integrated total and tropospheric ozone 126

5.8 Latitudinal distribution of ozone 127

5.8.1 Group A: 8-12N 127

5.8.2. Group B: 12-16N 128

5.8.3. Group C: 16-20 N 129

5.9. Day/night change in ozone vertical distribution 130

5.10. Stratosphere-Troposphere Exchange over the Arabian Sea 131

5.9. Summary and Conclusions 133

CHAPTER 6: Summary with general conclusions and outlook 140

6.1 Variations in vertical distribution of ozone over Ahmedabad 141

6.2 Study of ozone distribution over the Indo-Gangetic Plain (IGP) 142
during a winter month

6.3 Ship cruise study of ozone distributions over the Bay of Bengal 144
and the Arabian Sea

6.4 Future directions and scope 147