Detailed Contents

Acknowledgements (iii)
Certificate (v)
List of Figures (xi)
List of Tables (xv)

Chapter I: Introduction

2

Chapter II: Experimental Techniques

2.1 Laboratory Experiments 17
2.2 Field Experiments 17
2.3 Enzyme Extraction and Purification 18
2.3.1 Cytoplasmic Fraction 18
2.3.2 Wall Bound Fraction 20
2.4 Disc Electrophoresis 20
2.4.1 Preparation of Solutions 21
2.4.2 Preparation of Gels 23
2.4.3 Sample Preparation 24
2.4.4 Electrophoretic Separation 24
2.4.5 Preparation of Zymogram 26
2.5 Protein Estimation 26
2.6 Statistical Analysis 27

Chapter III: Growth Patterns of Dwarf and Tall Cultivars of Wheat and Maize in Relation to Dwarfism

3.1 Review of Literature 30
3.2 Experimental 32
3.2.1 Laboratory Experiments 32
3.2.1(1) Seedling Length 32
3.2.1(2) Fresh and Dry Weights 32
3.2.2 Field Experiments 32
3.2.2(1) Growth Data 32
3.3 Observations 32
3.3.1 Laboratory Experiments 32
3.3.1(1) Seedling Length 32
3.3.1(2) Fresh Weight 33
3.3.1(3) Dry Weight 33
3.3.2 Field Experiments 50
3.3.2(1) Plant Height 50
3.3.2(2) Internode Length and Number 63
3.4 Discussion 63
Chapter IV: IAA Oxidising Systems in Relation to Dwarfism

4.1 Review of Literature 67
4.2 Experimental 72
 4.2.1 IAA Oxidase Assay 72
 4.2.2 Isoenzyme Staining of IAA Oxidase 73
 4.2.3 Peroxidase Assay 75
 4.2.4 Isoenzyme Staining of IAA Oxidase 75
4.3 Observations 76
 4.3.1 Laboratory Experiments 76
 4.3.1(1) Cytoplasmic IAA Oxidase 76
 4.3.1(2) Wall Bound IAA Oxidase 85
 4.3.1(3) Cytoplasmic IAA Oxidase Isoenzymes 85
 4.3.1(4) Cytoplasmic Peroxidase 98
 4.3.1(5) Wall Bound Peroxidase 107
 4.3.1(6) Cytoplasmic Peroxidase Isoenzymes 107
 4.3.2 Field Experiments 120
 4.3.2(1) Cytoplasmic IAA Oxidase 120
 4.3.2(2) Wall Bound IAA Oxidase 125
 4.3.2(3) Cytoplasmic IAA Oxidase Isoenzymes 125
 4.3.2(4) Cytoplasmic Peroxidase 134
 4.3.2(5) Wall Bound Peroxidase 134
 4.3.2(6) Cytoplasmic Peroxidase Isoenzymes 143
4.4 Discussion 143

Chapter V: Phenol Complex in Relation to Dwarfism

5.1 Review of Literature 156
5.2 Experimental 160
 5.2.1 Phenol Content 160
 5.2.1(1) Extraction 160
 5.2.1(2) Total Phenol Assay 160
 5.2.1(3) Monophenol Assay 161
 5.2.1(4) o-Dihydroxy Phenol Assay 163
 5.2.2 Enzyme Assay 163
 5.2.2(1) o-Diphenol Oxidase Assay 163
 5.2.2(2) Isoenzyme Staining of o-Diphenol Oxidase 164
5.3 Observations 164
 5.3.1 Laboratory Experiments 164
 5.3.1(1) Total Phenols 165
 5.3.1(2) Mono Phenols 165
 5.3.1(3) o-Diphenols 182
 5.3.1(4) Cytoplasmic o-Diphenol Oxidase 182
 5.3.1(5) Wall Bound o-Diphenol Oxidase 199
 5.3.1(6) Cytoplasmic o-Diphenol Oxidase Isoenzymes 199
 5.3.2 Field Experiments 199
 5.3.2(1) Total Phenols 199
 5.3.2(2) Mono Phenols 216
 5.3.2(3) o-Diphenols 221
 5.3.2(4) Cytoplasmic o-Diphenol Oxidase 221
5.3.2(5) Wall Bound o-Diphenol Oxidase 230
5.3.2(6) Cytoplasmic o-Diphenol Oxidase Isoenzymes 230

5.4 Discussion 230

Chapter VI: Nitrate Uptake and Nitrate Reductase Activities in Relation to Dwarfism 245

6.1 Review of Literature 245
6.2 Experimental 250
 6.2.1 Nitrate Uptake 250
 6.2.2 Nitrate Reductase 254
6.3 Observations 255
 6.3.1 Laboratory Experiments 255
 6.3.1(1) Nitrate Uptake 255
 6.3.2(2) Nitrate Reductase Activity 263
 6.3.2 Field Experiments 274
 6.3.2(1) Nitrate Reductase Activity 274
6.4 Discussion 274

Chapter VII: Amylase Activity in Relation to Dwarfism 284

7.1 Review of Literature 284
7.2 Experimental 287
 7.2.1 Enzyme Assay 287
 7.2.2 Isoenzyme Staining of Amylase 288
7.3 Observations 290
 7.3.1 Laboratory Experiments 290
 7.3.1(1) Cytoplasmic Amylase 290
 7.3.1(2) Wall Bound Amylase 290
 7.3.1(3) Cytoplasmic Amylase Isoenzymes 307
 7.3.2 Field Experiments 312
 7.3.2(1) Cytoplasmic Amylase 312
 7.3.2(2) Wall Bound Amylase 312
7.4 Discussion 321

Chapter VIII: Effect of Gibberellic Acid (GA₃) on Seedling Growth and Endogenous Levels of Hormones in Relation to Dwarfism 326

8.1 Review of Literature 326
8.2 Experimental 331
 8.2.1 Effect of Gibberellic Acid(GA₃) on Seedling Growth 331
 8.2.2 Endogenous Growth Hormones 332
 8.2.2(1) Endogenous Gibberellin-like Substances 332
 8.2.2(1a) Extraction 332
 8.2.2(1b) Chromatography 333
 8.2.2(1c) Bioassay 333
 8.2.2(2) Endogenous IAA-like Substances 334
 8.2.2(2a) Extraction 334
8.2.2(2b) Chromatography 335
8.2.2(2c) Bioassay 335

8.3 Observations 337
8.3.1 Effect of Gibberellic Acid (GA₃) on Seedling Growth 337
8.3.1(1) Coleoptile Growth 337
8.3.1(2) Root Growth 342
8.3.2 Endogenous GA-like Substances 342
8.3.3 Endogenous IAA-like Substances 347

8.4 Discussion 347

Chapter IX: Electron Spin Resonance (ESR) Studies on Manganese (Mn²⁺) Content in Dry Seed, Embryo Axis and Endosperm in Relation to Dwarfism 357
9.1 Review of Literature 360
9.2 Experimental 360
9.2.1 Preparation of ESR Sample 360
9.2.2 ESR Spectrometer 361
9.2.3 Analysis 362
9.3 Observations 363
9.4 Discussion 378

Chapter X: Scanning Electron Microscopy of Embryo and Seed Coat in Relation to Dwarfism 382
10.1 Review of Literature 382
10.2 Experimental 385
10.3 Observations 385
10.3.1 Embryo 385
10.3.2 Seed Coat 388
10.4 Discussion 391

Chapter XI: Effect of Pretreatments and Foliar Sprays on Growth, Development and Yield Under Field Conditions in Relation to Dwarfism 400
11.1 Review of Literature 400
11.2 Experimental 406
11.2.1 Laboratory Experiments 406
11.2.2 Field Experiments 408
11.2.2(1) Growth Data 409
11.2.2(2) Growth Analysis 411
11.2.2(3) Foliar Spray 412
11.2.2(4) Studies on Final Yield Attributes 412
11.3 Observations 413
11.3.1 Growth Data 413
11.3.2 Growth Analysis 429
11.3.3 Final Yield Attributes: Foliar Sprays 429
11.3.3(1) Harvest Data 429
11.3.4 Final Yield Attributes: Pretreatments
11.3.4(1) Harvest Data

11.4 Discussion

Chapter XII: General Discussion

Chapter XIII: Summary and Conclusions

Salient Features

Bibliography

Appendix I: List of Publications

Appendix II: List of Research Work Done in Related Area in this Laboratory