CHAPTER – 4

DATA ANALYSIS & RESEARCH FINDINGS

PART CONTENTS :-

<table>
<thead>
<tr>
<th>CHAPTER 4 : DATA ANALYSIS & RESEARCH FINDINGS</th>
<th>61-136</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>DESCRIPTIVE STATISTICS</td>
</tr>
<tr>
<td>4.2</td>
<td>INFERENTIAL STATISTICS</td>
</tr>
<tr>
<td>4.2.1 Analysis of RQ2</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2 Analysis of RQ 3</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3 Analysis of RQ 4</td>
<td>79</td>
</tr>
<tr>
<td>4.2.4 Analysis of RQ 5</td>
<td>87</td>
</tr>
<tr>
<td>4.2.5 Analysis of RQ 6</td>
<td>100</td>
</tr>
<tr>
<td>4.2.6 Analysis of RQ 7</td>
<td>107</td>
</tr>
<tr>
<td>4.2.7 Analysis of RQ 8</td>
<td>122</td>
</tr>
<tr>
<td>4.2.8 Analysis of RQ 9</td>
<td>124</td>
</tr>
<tr>
<td>4.3</td>
<td>RESEARCH FINDINGS</td>
</tr>
<tr>
<td>4.3.1 Findings for RQ1</td>
<td>128</td>
</tr>
<tr>
<td>4.3.2 Findings for RQ2</td>
<td>129</td>
</tr>
<tr>
<td>4.3.3 Findings for RQ3</td>
<td>130</td>
</tr>
<tr>
<td>4.3.4 Findings for RQ4</td>
<td>131</td>
</tr>
<tr>
<td>4.3.5 Findings for RQ5</td>
<td>132</td>
</tr>
<tr>
<td>4.3.6 Findings for RQ6</td>
<td>133</td>
</tr>
<tr>
<td>4.3.7 Findings for RQ7</td>
<td>134</td>
</tr>
<tr>
<td>4.3.8 Findings for RQ8</td>
<td>135</td>
</tr>
<tr>
<td>4.3.9 Findings for RQ9</td>
<td>136</td>
</tr>
</tbody>
</table>
CHAPTER 4: DATA ANALYSIS & RESEARCH FINDINGS

4.1 DESCRIPTIVE STATISTICS

Descriptive statistics provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of quantitative analysis of data. Descriptive Statistics are used to present quantitative descriptions in a manageable form. Descriptive statistics help us to simply large amounts of data in a sensible way. Each descriptive statistic reduces lots of data into a simpler summary.

The N = 276

Figure 4.1.1: The graph showing the age group distribution of the sample

It is evident from the figure above that the maximum i.e. 122 out of 276 respondents belong to the age bracket of 20-22yrs. The age brackets which have been formed are <20 years, 20-22 years, 23-24 years and then > 24 years. The gap between the age groups is less as the respondents are from the college student category, henceforth the gaps could not be large.

Figure 4.1.2: The Graph Showing UG and PG distribution of the Sample
As the previous graph shows the maximum respondents below the age group of 23 years the same is being reflected in this graph that the maximum i.e. 192 out of 276 respondents are currently doing their under graduation studies.

Figure 4.1.3: The graph showing the Gender distribution of the sample

It is a pure coincidence that the number of male respondents are 138 and the number of female respondents are also 138, i.e. equal number of female and male respondents.

Figure 4.1.4: The Graph showing the Monthly Family Income

The maximum number of respondents i.e. 104 respondents belong to families whose total monthly income is higher than 25000, the second highest number of respondents i.e. 60 respondents belong to those families whose total monthly family income is <=10000. 45 respondents belong to the total monthly family income between 10001-
15000, 35 respondents belong to total monthly family income between 15001-20000 and the rest 32 respondents belong to total monthly family income between 20001-25000.

Figure 4.1.5: The Graph showing the Distribution of Fathers Occupation

The maximum i.e. 121 (44%) respondents belong to business man families, the second highest with 55 respondents i.e.(20%) belong to salaried families. 42 respondents(15%) are belonging to farmer background, 26 respondents(9%) could be others such as brokers, agents etc. and 21 respondents(8%) belong to families whose fathers are professionals such as Doctors, Lawyers, CA’s, Professors etc.

Figure 4.1.6: The Graph Showing the Distribution of Faculty or Study Stream of the Sample

Highest by 101 respondents i.e.(37 %) are studying in the technical stream such as MBA, MCA, BBA, BCA, Engineering etc. 60 respondents(22%) belong to Science
stream such as B.Sc., M.Sc., Biotechnology, Pharmacy etc. Same 60 respondents (22%) belong to Arts stream such as BA, Fine arts etc. and 55 respondents (20%) belong to commerce stream such as B.com, Mcom etc.

Table 4.1.1: The Exposure towards Television and Movie Medium of the respondents in the sample

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television watching hours (in minutes) per day</td>
<td>276</td>
<td>30</td>
<td>360</td>
<td>157.28</td>
<td>88.195</td>
</tr>
<tr>
<td>No. of movies watched per month</td>
<td>276</td>
<td>0</td>
<td>7</td>
<td>2.32</td>
<td>1.333</td>
</tr>
</tbody>
</table>

On an average the respondents are watching television for 3 hours per day (157.28 minutes). Hence 13% i.e. 1/8th part of their day is spent on watching dedicated television each day which gives opportunity to marketers to get them exposed to the traditional television advertisement. The average number of movies watched by the respondents is about 2 movies per month. The maximum movies watched have reached to about 7 movies in a month.

Figure 4.1.7: The Graph of Respondents able to notice brands in a movie

90% of respondents i.e. 249 out of 276 respondents are able to notice brands which are being shown in the movies. and only 10 % i.e.(27 out of 276) are unable to notice brands which are being shown in the movies. Noticing brands would mean that the brands integrated within the movie is being registered in their implicit mind and they remember the brands even after the movie gets over.
Figure 4.1.8: The Graph of Respondents aware about brand placements as a marketing tool

The earlier figure shows us that 90% of respondents are able to notice brands which are shown in the movies and here it is also shown that 91% are aware that this is a marketing technique. And almost the same i.e. 10% who are not able to notice brands are the ones who are also not aware about it being a marketing technique by 9% i.e. 24 respondents out of 276.

Figure 4.1.9: The Graph of Respondents considering Brand placements Wrong or Not Wrong

60% respondents i.e. 165 out of 276 respondents do not consider this marketing technique of brand placement wrong or unethical practice. But 40% of the respondents i.e. 111 out of 276 feel that this is a wrong practice and henceforth consider it unethical.
4.2 INFERENTIAL STATISTICS

With inferential statistics, researcher is trying to reach conclusions that extend beyond the immediate data alone. Researcher uses inferential statistics to try to infer from the sample data what the population might think. Also use inferential statistics to make judgments of the probability that an observed difference between groups is a dependable one or one that might have happened by chance in this study. Thus, we use inferential statistics to make inferences from our data to more general conditions.

4.2.1 Analysis of RQ 2

RQ2: Is the effectiveness of the television advertisements declining?

Table 4.2.1: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents feeling the television advertising between the programs are disturbing using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television advertising between the programs found to be disturbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>27.4</td>
<td>54</td>
<td>64.3</td>
<td>7</td>
<td>8.3</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Sometimes</td>
<td>36.9</td>
<td>65</td>
<td>53.3</td>
<td>12</td>
<td>9.8</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>31.1</td>
<td>27</td>
<td>60.0</td>
<td>4</td>
<td>8.9</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Age ≤ 20 yrs.</td>
<td>23</td>
<td>27.4</td>
<td>54</td>
<td>64.3</td>
<td>7</td>
<td>8.3</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>45</td>
<td>36.9</td>
<td>65</td>
<td>53.3</td>
<td>12</td>
<td>9.8</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>14</td>
<td>31.1</td>
<td>27</td>
<td>60.0</td>
<td>4</td>
<td>8.9</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>7</td>
<td>28.0</td>
<td>16</td>
<td>64.0</td>
<td>2</td>
<td>8.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square Value - 2.941</td>
<td>df - 6</td>
<td>p-value - 0.816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender - Male</td>
<td>47</td>
<td>34.1</td>
<td>77</td>
<td>55.8</td>
<td>14</td>
<td>10.1</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>42</td>
<td>30.4</td>
<td>85</td>
<td>61.6</td>
<td>11</td>
<td>8.0</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square Value - 1.036</td>
<td>df - 2</td>
<td>p-value - 0.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤ 10,000</td>
<td>22</td>
<td>36.7</td>
<td>30</td>
<td>50.0</td>
<td>8</td>
<td>13.3</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>10</td>
<td>22.2</td>
<td>27</td>
<td>60.0</td>
<td>8</td>
<td>17.8</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>8</td>
<td>22.9</td>
<td>25</td>
<td>71.4</td>
<td>2</td>
<td>5.7</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>9</td>
<td>28.1</td>
<td>20</td>
<td>62.5</td>
<td>3</td>
<td>9.4</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>40</td>
<td>38.5</td>
<td>60</td>
<td>57.7</td>
<td>4</td>
<td>3.8</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square Value - 14.529</td>
<td>df - 8</td>
<td>p-value - 0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation Business</td>
<td>47</td>
<td>38.8</td>
<td>72</td>
<td>59.5</td>
<td>2</td>
<td>1.7</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>17</td>
<td>30.9</td>
<td>35</td>
<td>63.6</td>
<td>3</td>
<td>5.5</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>3</td>
<td>27.3</td>
<td>6</td>
<td>54.5</td>
<td>2</td>
<td>18.2</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>5</td>
<td>11.9</td>
<td>26</td>
<td>61.9</td>
<td>11</td>
<td>26.2</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>6</td>
<td>28.6</td>
<td>11</td>
<td>52.4</td>
<td>4</td>
<td>19.0</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>11</td>
<td>42.3</td>
<td>12</td>
<td>46.2</td>
<td>3</td>
<td>11.5</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square Value - 34.454</td>
<td>df - 10</td>
<td>p-value - 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying UG</td>
<td>58</td>
<td>30.2</td>
<td>115</td>
<td>59.9</td>
<td>19</td>
<td>9.9</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>31</td>
<td>36.9</td>
<td>47</td>
<td>56.0</td>
<td>6</td>
<td>7.1</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square Value - 1.456</td>
<td>df - 6</td>
<td>p-value - 0.483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Science</td>
<td>21</td>
<td>35.0</td>
<td>33</td>
<td>55.0</td>
<td>6</td>
<td>10.0</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>15</td>
<td>27.3</td>
<td>37</td>
<td>67.3</td>
<td>3</td>
<td>5.5</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>10</td>
<td>16.7</td>
<td>40</td>
<td>66.7</td>
<td>10</td>
<td>16.7</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>43</td>
<td>42.6</td>
<td>52</td>
<td>55.0</td>
<td>6</td>
<td>5.9</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square Value - 16.559</td>
<td>df - 6</td>
<td>p-value - 0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>89</td>
<td>32.2</td>
<td>162</td>
<td>58.7</td>
<td>25</td>
<td>9.1</td>
<td>276</td>
</tr>
</tbody>
</table>
Interpretation : The null hypothesis (H_0) should be rejected in favor of the alternative hypothesis H_1 “There is an association between the background variables and the opinion regarding disturbance caused due to television advertisements.” Chi-square test of independence was performed to examine the relation between background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with the opinion of respondents that television advertising between the programs was found to be disturbing.

The relation between the fathers occupation was significant $\chi^2(10, N=276)=34.454$, p=0.000.

Respondents whose father were farmers were least disturbed at 12% and those which belonged to business families were maximum disturbed at 39%. Again it was the farmer’s family who were highest to never get disturbed by 26% due to the television advertisements.

The relation between the faculty was significant $\chi^2(6, N=276)=16.559$, p=0.011.

The respondents who belonged to technical faculty were highest at 43% who found the television advertisements always disturbing but on the contrary respondents from Arts faculty were highest at 10% who never found these advertisements on television to be disturbing.

Overall result shows that 90% of respondents find the television advertisements disturbing either always or sometimes.
Table 4.2.2: Cross tabulation : Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents behavior to switch over (zapping) channels while TV commercials appear using chi-square test for independence.

<table>
<thead>
<tr>
<th>Behavior to switch over(zapping) channels while TV commercials appear</th>
<th>Always</th>
<th>Sometimes</th>
<th>Never</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background variables</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>33</td>
<td>39.3</td>
<td>46</td>
<td>54.8</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>52</td>
<td>42.6</td>
<td>65</td>
<td>53.3</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>17</td>
<td>37.8</td>
<td>26</td>
<td>57.8</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>8</td>
<td>32.0</td>
<td>15</td>
<td>60.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1.734</td>
<td>df-6</td>
<td>p-value</td>
<td>0.942</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49</td>
<td>35.5</td>
<td>80</td>
<td>58</td>
</tr>
<tr>
<td>Female</td>
<td>61</td>
<td>44.2</td>
<td>72</td>
<td>52.2</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>2.873</td>
<td>df-2</td>
<td>p-value</td>
<td>0.238</td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤=10,000</td>
<td>27</td>
<td>45</td>
<td>29</td>
<td>48.3</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>20</td>
<td>44.4</td>
<td>22</td>
<td>48.9</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>14</td>
<td>40.0</td>
<td>21</td>
<td>60.0</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>14</td>
<td>43.8</td>
<td>15</td>
<td>46.9</td>
</tr>
<tr>
<td>>25000</td>
<td>35</td>
<td>33.7</td>
<td>65</td>
<td>62.5</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>7.933</td>
<td>df-8</td>
<td>p-value</td>
<td>0.440</td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>49</td>
<td>40.5</td>
<td>66</td>
<td>54.5</td>
</tr>
<tr>
<td>Salaried</td>
<td>23</td>
<td>41.8</td>
<td>31</td>
<td>56.4</td>
</tr>
<tr>
<td>Retired</td>
<td>6</td>
<td>54.5</td>
<td>5</td>
<td>45.5</td>
</tr>
<tr>
<td>Farmer</td>
<td>19</td>
<td>45.2</td>
<td>19</td>
<td>45.2</td>
</tr>
<tr>
<td>Professional</td>
<td>8</td>
<td>38.1</td>
<td>12</td>
<td>57.1</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>19.2</td>
<td>19</td>
<td>73.1</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>9.955</td>
<td>df-10</td>
<td>p-value</td>
<td>0.444</td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>81</td>
<td>42.2</td>
<td>101</td>
<td>52.6</td>
</tr>
<tr>
<td>PG</td>
<td>29</td>
<td>34.5</td>
<td>51</td>
<td>60.7</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1.582</td>
<td>df-2</td>
<td>p-value</td>
<td>0.453</td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>26</td>
<td>43.3</td>
<td>30</td>
<td>50.0</td>
</tr>
<tr>
<td>Commerce</td>
<td>17</td>
<td>30.9</td>
<td>37</td>
<td>67.3</td>
</tr>
<tr>
<td>Arts</td>
<td>30</td>
<td>50.0</td>
<td>28</td>
<td>46.7</td>
</tr>
<tr>
<td>Technical</td>
<td>37</td>
<td>36.6</td>
<td>57</td>
<td>56.4</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>8.164</td>
<td>df-6</td>
<td>p-value</td>
<td>0.226</td>
</tr>
<tr>
<td>Column total</td>
<td>110</td>
<td>39.9</td>
<td>152</td>
<td>55.1</td>
</tr>
</tbody>
</table>
Chapter 4: Data Analysis & Research Findings

H₀₂: There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.

Hₐ₂: There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.

Interpretation: Based on the statistical test we failed to reject the $H₀$ i.e. “There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.” The p value is $p>0.05$ for all the chi square (χ^2) tests of independence performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with the behavior to switch over (zapping) channels while TV commercials appear. By looking at the percentage frequency distribution it is evident that the zipping or switch over channels behavior is a very common phenomenon amongst all the respondents and is also very high as on combining the all respondents of different background variables scores of “always” & “sometimes” are found to follow this zapping behavior by 95%.
Chapter 4 : Data Analysis & Research Findings

Table 4.2.3: Cross tabulation - Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that television advertisements have influence over their purchases using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Always Count</th>
<th>%</th>
<th>Very Often Count</th>
<th>%</th>
<th>Sometimes Count</th>
<th>%</th>
<th>Rarely Count</th>
<th>%</th>
<th>Never Count</th>
<th>%</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤20 yrs.</td>
<td>7</td>
<td>8.3</td>
<td>14</td>
<td>16.7</td>
<td>38</td>
<td>45.2</td>
<td>8</td>
<td>9.5</td>
<td>17</td>
<td>20.2</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>6</td>
<td>4.9</td>
<td>16</td>
<td>13.1</td>
<td>67</td>
<td>54.9</td>
<td>25</td>
<td>20.5</td>
<td>8</td>
<td>6.6</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>24.4</td>
<td>19</td>
<td>42.2</td>
<td>12</td>
<td>26.7</td>
<td>3</td>
<td>6.7</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>20.0</td>
<td>13</td>
<td>52.0</td>
<td>5</td>
<td>20.0</td>
<td>2</td>
<td>8.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>25.371</td>
<td>df-12</td>
<td>p-value=0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender - Male</td>
<td>7</td>
<td>5.1</td>
<td>23</td>
<td>16.7</td>
<td>66</td>
<td>47.8</td>
<td>23</td>
<td>16.7</td>
<td>19</td>
<td>13.8</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>4.3</td>
<td>23</td>
<td>16.7</td>
<td>71</td>
<td>51.4</td>
<td>27</td>
<td>19.6</td>
<td>11</td>
<td>8.0</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>2.713</td>
<td>df-4</td>
<td>p-value=0.607</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤10,000</td>
<td>5</td>
<td>8.3</td>
<td>8</td>
<td>13.3</td>
<td>27</td>
<td>45.0</td>
<td>9</td>
<td>15.0</td>
<td>11</td>
<td>18.3</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>2</td>
<td>4.4</td>
<td>5</td>
<td>11.1</td>
<td>18</td>
<td>40.0</td>
<td>14</td>
<td>31.1</td>
<td>6</td>
<td>13.3</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>1</td>
<td>2.9</td>
<td>6</td>
<td>17.1</td>
<td>22</td>
<td>62.9</td>
<td>4</td>
<td>11.4</td>
<td>2</td>
<td>5.7</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>15.6</td>
<td>18</td>
<td>56.3</td>
<td>7</td>
<td>21.9</td>
<td>2</td>
<td>6.3</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>5</td>
<td>4.8</td>
<td>22</td>
<td>21.2</td>
<td>52</td>
<td>50.0</td>
<td>16</td>
<td>15.4</td>
<td>9</td>
<td>8.7</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>19.916</td>
<td>df-16</td>
<td>p-value=0.224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation - Business</td>
<td>2</td>
<td>1.7</td>
<td>23</td>
<td>19.0</td>
<td>60</td>
<td>49.6</td>
<td>24</td>
<td>19.8</td>
<td>12</td>
<td>9.9</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>2</td>
<td>3.6</td>
<td>12</td>
<td>21.8</td>
<td>29</td>
<td>52.7</td>
<td>7</td>
<td>12.7</td>
<td>5</td>
<td>9.1</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>1</td>
<td>9.1</td>
<td>1</td>
<td>9.1</td>
<td>6</td>
<td>54.5</td>
<td>2</td>
<td>18.2</td>
<td>1</td>
<td>9.1</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>5</td>
<td>11.9</td>
<td>3</td>
<td>7.1</td>
<td>19</td>
<td>45.2</td>
<td>10</td>
<td>23.8</td>
<td>5</td>
<td>11.9</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>1</td>
<td>4.8</td>
<td>4</td>
<td>19.0</td>
<td>13</td>
<td>61.9</td>
<td>3</td>
<td>14.3</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>7.7</td>
<td>3</td>
<td>11.5</td>
<td>10</td>
<td>38.5</td>
<td>4</td>
<td>15.4</td>
<td>7</td>
<td>26.9</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>25.014</td>
<td>df-20</td>
<td>p-value=0.201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying UG</td>
<td>12</td>
<td>6.3</td>
<td>30</td>
<td>15.6</td>
<td>97</td>
<td>50.5</td>
<td>26</td>
<td>13.5</td>
<td>27</td>
<td>14.1</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>1</td>
<td>1.2</td>
<td>16</td>
<td>19.0</td>
<td>40</td>
<td>47.6</td>
<td>24</td>
<td>28.6</td>
<td>3</td>
<td>3.6</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>16.889</td>
<td>df-4</td>
<td>p-value=0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Science</td>
<td>4</td>
<td>6.7</td>
<td>13</td>
<td>21.7</td>
<td>27</td>
<td>45.0</td>
<td>10</td>
<td>16.7</td>
<td>6</td>
<td>10.0</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>1</td>
<td>1.8</td>
<td>9</td>
<td>16.4</td>
<td>26</td>
<td>47.3</td>
<td>9</td>
<td>16.4</td>
<td>10</td>
<td>18.2</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>4</td>
<td>6.7</td>
<td>6</td>
<td>10.0</td>
<td>32</td>
<td>53.3</td>
<td>12</td>
<td>20.0</td>
<td>6</td>
<td>10.0</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>4</td>
<td>4.0</td>
<td>18</td>
<td>17.8</td>
<td>52</td>
<td>51.5</td>
<td>19</td>
<td>18.8</td>
<td>8</td>
<td>7.9</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>9.117</td>
<td>df-12</td>
<td>p-value=0.693</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>13</td>
<td>4.7</td>
<td>46</td>
<td>16.7</td>
<td>137</td>
<td>49.6</td>
<td>50</td>
<td>18.1</td>
<td>30</td>
<td>10.9</td>
<td>276</td>
</tr>
</tbody>
</table>

70
H\textsubscript{03} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that television advertisements have influence over their purchases.

H\textsubscript{A3} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that television advertisements have influence over their purchases.

Interpretation: The null hypothesis should be rejected in favor of the alternative hypothesis H\textsubscript{1} “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that television advertisements have influence over their purchases.”

Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion that television advertisements have influence over their purchases.

The relation between the age was significant $\chi^2(12, N=276)=25.371, p=0.013$

The relation between the studying (UG/PG) of respondent was significant $\chi^2(4, N=276)=16.889, p=0.002$

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (age, studying).
Table 4.2.4: Cross tabulation :- Percentage frequency distribution of all Background variables of respondents(age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents behavior to switch over(zapping) channels while TV commercials appear using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤20 yrs.</td>
<td>33</td>
<td>39.3</td>
<td>46</td>
<td>54.8</td>
<td>5</td>
<td>6.0</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>52</td>
<td>42.6</td>
<td>65</td>
<td>53.3</td>
<td>5</td>
<td>4.1</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>17</td>
<td>37.8</td>
<td>26</td>
<td>57.8</td>
<td>2</td>
<td>4.4</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs.</td>
<td>8</td>
<td>32.0</td>
<td>15</td>
<td>60.0</td>
<td>2</td>
<td>8.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 1.734</td>
<td>df- 6</td>
<td>p-value- 0.942</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender Male</td>
<td>49</td>
<td>35.5</td>
<td>80</td>
<td>58</td>
<td>9</td>
<td>6.5</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>61</td>
<td>44.2</td>
<td>72</td>
<td>52.2</td>
<td>5</td>
<td>3.8</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 2.873</td>
<td>df- 2</td>
<td>p-value- 0.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤=10,000</td>
<td>27</td>
<td>45</td>
<td>29</td>
<td>48.3</td>
<td>4</td>
<td>6.7</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>20</td>
<td>44.4</td>
<td>22</td>
<td>48.9</td>
<td>3</td>
<td>6.7</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>14</td>
<td>40.0</td>
<td>21</td>
<td>60.0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>14</td>
<td>43.8</td>
<td>15</td>
<td>46.9</td>
<td>3</td>
<td>9.4</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>35</td>
<td>33.7</td>
<td>65</td>
<td>62.5</td>
<td>4</td>
<td>3.8</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 7.933</td>
<td>df- 8</td>
<td>p-value- 0.440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation Business</td>
<td>49</td>
<td>40.5</td>
<td>66</td>
<td>54.5</td>
<td>6</td>
<td>5.0</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>23</td>
<td>41.8</td>
<td>31</td>
<td>56.4</td>
<td>1</td>
<td>1.8</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>6</td>
<td>54.5</td>
<td>5</td>
<td>45.5</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>19</td>
<td>45.2</td>
<td>19</td>
<td>45.2</td>
<td>4</td>
<td>9.5</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>8</td>
<td>38.1</td>
<td>12</td>
<td>57.1</td>
<td>1</td>
<td>4.8</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>19.2</td>
<td>19</td>
<td>73.1</td>
<td>2</td>
<td>7.7</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 9.955</td>
<td>df- 10</td>
<td>p-value- 0.444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying UG</td>
<td>81</td>
<td>42.2</td>
<td>101</td>
<td>52.6</td>
<td>10</td>
<td>5.2</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>29</td>
<td>34.5</td>
<td>51</td>
<td>60.7</td>
<td>4</td>
<td>4.8</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 1.582</td>
<td>df- 2</td>
<td>p-value- 0.453</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Science</td>
<td>26</td>
<td>43.3</td>
<td>30</td>
<td>50.0</td>
<td>4</td>
<td>6.7</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>17</td>
<td>30.9</td>
<td>37</td>
<td>67.3</td>
<td>1</td>
<td>1.8</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>30</td>
<td>50.0</td>
<td>28</td>
<td>46.7</td>
<td>2</td>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>37</td>
<td>36.6</td>
<td>57</td>
<td>56.4</td>
<td>7</td>
<td>6.9</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 8.164</td>
<td>df-6</td>
<td>p-value-0.0226</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>110</td>
<td>39.9</td>
<td>152</td>
<td>55.1</td>
<td>14</td>
<td>5.1</td>
<td>276</td>
</tr>
</tbody>
</table>
H$_{04}$ There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.

H$_{A4}$ There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.

Interpretation: Based on the statistical test we failed to reject the H_0 i.e. “There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and the behavior to switch over (zapping) channels while TV commercials appear.”

The p value is $p>0.05$ for all the chi square (χ^2) tests of independence performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with the behavior to switch over (zapping) channels while TV commercials appear.

By looking at the percentage frequency distribution it is evident that the zipping or switch over channels behavior is a very common phenomenon amongst all the respondents and is also very high as on combining the all respondents of different background variables scores of “always” & “sometimes” are found to follow this zapping behavior by 95%.

4.2.2 Analysis of RQ 3

RQ3: How does product placement affect the viewer? To check the acceptability and effectiveness of brand placements in Hindi movies.
Table 4.2.5: Cross tabulation : Percentage frequency distribution of all Background variables of respondents(age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents ability to notice brands shown in the movie using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>ROW TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>76</td>
<td>90.5</td>
<td>8</td>
<td>9.5</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>108</td>
<td>88.5</td>
<td>14</td>
<td>11.5</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>43</td>
<td>95.6</td>
<td>2</td>
<td>4.4</td>
<td>45</td>
</tr>
<tr>
<td>>24yrs</td>
<td>22</td>
<td>88.0</td>
<td>3</td>
<td>12.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>1.995</td>
<td>df-3</td>
<td>p-value</td>
<td>0.574</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>124</td>
<td>89.9</td>
<td>14</td>
<td>10.1</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>125</td>
<td>90.6</td>
<td>13</td>
<td>9.4</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>0.41</td>
<td>df-1</td>
<td>p-value</td>
<td>0.839</td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤=10,000</td>
<td>55</td>
<td>91.7</td>
<td>5</td>
<td>8.3</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>41</td>
<td>91.1</td>
<td>4</td>
<td>8.9</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>31</td>
<td>88.6</td>
<td>4</td>
<td>11.4</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>29</td>
<td>90.6</td>
<td>3</td>
<td>9.4</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>93</td>
<td>89.4</td>
<td>11</td>
<td>10.6</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>0.371</td>
<td>df-4</td>
<td>p-value</td>
<td>0.985</td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>108</td>
<td>89.3</td>
<td>13</td>
<td>10.7</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>52</td>
<td>94.5</td>
<td>3</td>
<td>5.5</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>8</td>
<td>72.7</td>
<td>3</td>
<td>27.3</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>40</td>
<td>95.2</td>
<td>2</td>
<td>4.8</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>18</td>
<td>85.7</td>
<td>3</td>
<td>14.3</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>23</td>
<td>88.5</td>
<td>3</td>
<td>11.5</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>0.371</td>
<td>df-5</td>
<td>p-value</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>171</td>
<td>89.1</td>
<td>21</td>
<td>10.9</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>78</td>
<td>92.9</td>
<td>6</td>
<td>7.1</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>0.953</td>
<td>df-1</td>
<td>p-value</td>
<td>0.329</td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>53</td>
<td>88.3</td>
<td>7</td>
<td>11.7</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>52</td>
<td>94.5</td>
<td>3</td>
<td>5.5</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>57</td>
<td>95.0</td>
<td>3</td>
<td>5.0</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>87</td>
<td>86.1</td>
<td>14</td>
<td>13.9</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square Value</td>
<td>4.868</td>
<td>df-3</td>
<td>p-value</td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>249</td>
<td>90.2</td>
<td>27</td>
<td>9.8</td>
<td>276</td>
</tr>
</tbody>
</table>
H_{05} There is no association\((relation) \) between the background variables\((\) age, gender, family monthly income, fathers occupation, studying, faculty\() \) and the ability of the respondents to notice brands shown in the movie.

\[H_{A5} \] There is an association\((relation) \) between the background variables\((\) age, gender, family monthly income, fathers occupation, studying, faculty\() \) and the behavior to switch over\((\)zapping\() \) channels while TV commercials appear.

Based on the statistical test we failed to reject the \(H_0 \) i.e. “There is no association\((relation) \) between the background variables\((\) age, gender, family monthly income, fathers occupation, studying, faculty\() \) and the ability of the respondents to notice brands shown in the movie.”.

The p value is \(p>0.05 \) for all the chi-square \(\chi^2 \) tests of independence performed to examine the association between the background variables\((\) age, gender, family monthly income, fathers occupation, studying, faculty\() \) with the ability of the respondents to notice brands shown in the movie.

By looking at the \% frequency distribution it is evident that the ability of respondents to notice the brands shown in a film is very high as all the respondents of different background variables notice brands in movies. Therefore 90\% of respondents in totality do notice brands.
Table 4.2.6: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion that brand placement disturb the flow of movie and cause irritation using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>10</td>
<td>11.9</td>
<td>17</td>
<td>20.2</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>8</td>
<td>6.6</td>
<td>15</td>
<td>12.3</td>
<td>51</td>
<td>31</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>7</td>
<td>15.6</td>
<td>11</td>
<td>24.4</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>4</td>
<td>16.0</td>
<td>4</td>
<td>16.0</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>20.3</td>
<td>28</td>
<td>16.7</td>
<td>21</td>
<td>13.1</td>
</tr>
<tr>
<td>df</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>20</td>
<td>14.5</td>
<td>28</td>
<td>20.3</td>
<td>32</td>
<td>23.2</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>6.5</td>
<td>19</td>
<td>13.8</td>
<td>72</td>
<td>52.2</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>23.2</td>
<td>50</td>
<td>25.4</td>
<td>28</td>
<td>18.1</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10,000</td>
<td>7</td>
<td>11.7</td>
<td>8</td>
<td>13.3</td>
<td>28</td>
<td>46.7</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>3</td>
<td>6.7</td>
<td>9</td>
<td>20.0</td>
<td>21</td>
<td>46.7</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>3</td>
<td>8.6</td>
<td>6</td>
<td>17.1</td>
<td>18</td>
<td>51.4</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>2</td>
<td>6.3</td>
<td>6</td>
<td>18.8</td>
<td>8</td>
<td>25.0</td>
</tr>
<tr>
<td>>25000</td>
<td>14</td>
<td>13.5</td>
<td>18</td>
<td>17.3</td>
<td>29</td>
<td>27.9</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>16.7</td>
<td>25</td>
<td>18.1</td>
<td>28</td>
<td>15.4</td>
</tr>
<tr>
<td>df</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>17</td>
<td>14.0</td>
<td>22</td>
<td>18.2</td>
<td>38</td>
<td>31.4</td>
</tr>
<tr>
<td>Salaried</td>
<td>4</td>
<td>7.3</td>
<td>8</td>
<td>14.5</td>
<td>19</td>
<td>34.5</td>
</tr>
<tr>
<td>Retired</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>36.4</td>
<td>3</td>
<td>27.3</td>
</tr>
<tr>
<td>Farmer</td>
<td>2</td>
<td>4.8</td>
<td>6</td>
<td>14.3</td>
<td>19</td>
<td>45.2</td>
</tr>
<tr>
<td>Professional</td>
<td>4</td>
<td>19.0</td>
<td>3</td>
<td>14.3</td>
<td>11</td>
<td>52.4</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>7.7</td>
<td>4</td>
<td>15.4</td>
<td>14</td>
<td>53.8</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
<td>25.4</td>
<td>66</td>
<td>32.8</td>
<td>51</td>
<td>15.3</td>
</tr>
<tr>
<td>df</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>17</td>
<td>8.9</td>
<td>33</td>
<td>17.2</td>
<td>76</td>
<td>39.6</td>
</tr>
<tr>
<td>PG</td>
<td>12</td>
<td>14.3</td>
<td>14</td>
<td>16.7</td>
<td>28</td>
<td>33.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>17.0</td>
<td>47</td>
<td>17.0</td>
<td>104</td>
<td>37.7</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>11</td>
<td>18.3</td>
<td>9</td>
<td>15.0</td>
<td>22</td>
<td>36.7</td>
</tr>
<tr>
<td>Commerce</td>
<td>4</td>
<td>7.3</td>
<td>12</td>
<td>21.8</td>
<td>20</td>
<td>36.4</td>
</tr>
<tr>
<td>Arts</td>
<td>4</td>
<td>6.7</td>
<td>8</td>
<td>13.3</td>
<td>36</td>
<td>60.0</td>
</tr>
<tr>
<td>Technical</td>
<td>10</td>
<td>9.9</td>
<td>18</td>
<td>17.8</td>
<td>26</td>
<td>25.7</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>13.8</td>
<td>45</td>
<td>25.5</td>
<td>67</td>
<td>36.2</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

76
H₀₆ There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement disturb the flow of movie and cause irritation.

H₁₆ There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement disturb the flow of movie and cause irritation.

Interpretation: The null hypothesis should be rejected in favor of the alternative hypothesis H₁ “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement disturb the flow of movie and cause irritation.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion that brand placement disturb the flow of movie and cause irritation.

The relation between the gender was significant $\chi^2(4, N=276)=25.725$, $p=0.000$

The relation between the respondents faculty was significant $\chi^2(2, N=276)=28.768$, $p=0.004$

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (gender & faculty).

By looking at the % frequency distribution the relation with gender the respondents opinion that brand placement disturb the flow of movie and cause irritation, 42.1% male respondents do not find the brand placement disturbing the flow of the movie and cause of irritation (on combining the score of ‘strongly agree’ and ‘agree’ as
‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) and 23.2% are neutral and the rest 34.8% are agreeing to brand placements being a disturbing factor. 52.2% of female are neutral on this account and the rest 27.5% don’t find brand placement disturbing in front of 20.3% finding it as a disturbing factor.

Again by looking at the % frequency distribution the relation with the students faculty background and the respondents opinion that brand placement disturb the flow of movie and cause irritation, 46.5% of technical background students do not find it disturbing(on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) and 25.7% are neutral and the rest 27.7% are agreeing to brand placements being a disturbing factor.

Table 4.2.7: Cross tabulation : Percentage frequency distribution of respondents opinion that brand placement in movies help to develop interest in brands with respondents opinion that brand placement in movies bring awareness about brands using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents opinion that brand placement in movies bring awareness about brands</th>
<th>Respondents opinion that brand placement in movies help to develop interest in brands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Always</td>
</tr>
<tr>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Always</td>
<td>7</td>
</tr>
<tr>
<td>Sometimes</td>
<td>40</td>
</tr>
<tr>
<td>Never</td>
<td>6</td>
</tr>
<tr>
<td>Column Total</td>
<td>53</td>
</tr>
</tbody>
</table>

Chi-square Value- **19.630** df-4 **p-value-0.001**

H$_{07}$ There is no association(relation) between respondents opinion that brand placement in movies help to develop interest in brands and respondent’s opinion that brand placement in movies bring awareness about brands.

H$_{A7}$ There is an association(relation) between respondents opinion that brand placement in movies help to develop interest in brands and respondent’s opinion that brand placement in movies bring awareness about brands.
Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H$_1$ “There is an association (relation) between respondents opinion that brand placement in movies help to develop interest in brands and respondents opinion that brand placement in movies bring awareness about brands.”

Chi-square test of independence was performed to examine the relation and it was significant

$\chi^2(4,N=276)=19.630, p=0.001$

The p value is $p\leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association.

4.2.3 Analysis of RQ 4

RQ4: Do viewers perceive that product placement increases the realism of the film or broadcast program?
Table 4.2.8: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion that brand placement increases realism and makes experience more realistic using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>3</td>
<td>3.6%</td>
<td>29</td>
<td>34.5%</td>
<td>31</td>
<td>36.9%</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>14</td>
<td>11.5%</td>
<td>49</td>
<td>40.2%</td>
<td>35</td>
<td>28.7%</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>5</td>
<td>11.1%</td>
<td>16</td>
<td>35.6%</td>
<td>18</td>
<td>40.0%</td>
</tr>
<tr>
<td>>24 yrs.</td>
<td>1</td>
<td>4.0%</td>
<td>8</td>
<td>32.0%</td>
<td>10</td>
<td>40.0%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 10.536</td>
<td>df: 12</td>
<td>p-value: 0.569</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12</td>
<td>8.7%</td>
<td>47</td>
<td>34.1%</td>
<td>48</td>
<td>34.8%</td>
</tr>
<tr>
<td>Female</td>
<td>11</td>
<td>8.0%</td>
<td>55</td>
<td>39.9%</td>
<td>46</td>
<td>33.3%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 1.208</td>
<td>df: 4</td>
<td>p-value: 0.877</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤10,000</td>
<td>2</td>
<td>3.3%</td>
<td>21</td>
<td>35.0%</td>
<td>22</td>
<td>36.7%</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>3</td>
<td>6.7%</td>
<td>21</td>
<td>46.7%</td>
<td>15</td>
<td>33.3%</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>2</td>
<td>5.7%</td>
<td>8</td>
<td>22.9%</td>
<td>14</td>
<td>40.0%</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>2</td>
<td>6.3%</td>
<td>12</td>
<td>37.5%</td>
<td>12</td>
<td>37.5%</td>
</tr>
<tr>
<td>>25000</td>
<td>14</td>
<td>13.5%</td>
<td>40</td>
<td>38.5%</td>
<td>31</td>
<td>29.8%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 31.758</td>
<td>df: 16</td>
<td>p-value: 0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>9</td>
<td>7.4%</td>
<td>47</td>
<td>38.8%</td>
<td>36</td>
<td>29.8%</td>
</tr>
<tr>
<td>Salaried</td>
<td>8</td>
<td>14.5%</td>
<td>22</td>
<td>40.0%</td>
<td>20</td>
<td>36.4%</td>
</tr>
<tr>
<td>Retired</td>
<td>0</td>
<td>0.0%</td>
<td>7</td>
<td>63.6%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Farmer</td>
<td>4</td>
<td>9.5%</td>
<td>10</td>
<td>23.8%</td>
<td>18</td>
<td>42.9%</td>
</tr>
<tr>
<td>Professional</td>
<td>1</td>
<td>4.8%</td>
<td>8</td>
<td>38.1%</td>
<td>10</td>
<td>47.6%</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>3.8%</td>
<td>8</td>
<td>30.8%</td>
<td>10</td>
<td>38.5%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 26.878</td>
<td>df: 20</td>
<td>p-value: 0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>11</td>
<td>5.7%</td>
<td>70</td>
<td>36.5%</td>
<td>70</td>
<td>36.5%</td>
</tr>
<tr>
<td>PG</td>
<td>12</td>
<td>14.3%</td>
<td>32</td>
<td>38.1%</td>
<td>24</td>
<td>28.6%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 6.396</td>
<td>df: 4</td>
<td>p-value: 0.171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>5</td>
<td>8.3%</td>
<td>29</td>
<td>48.3%</td>
<td>18</td>
<td>30.0%</td>
</tr>
<tr>
<td>Commerce</td>
<td>3</td>
<td>5.5%</td>
<td>23</td>
<td>41.8%</td>
<td>18</td>
<td>32.7%</td>
</tr>
<tr>
<td>Arts</td>
<td>3</td>
<td>5.0%</td>
<td>14</td>
<td>23.3%</td>
<td>25</td>
<td>41.7%</td>
</tr>
<tr>
<td>Technical</td>
<td>12</td>
<td>11.9%</td>
<td>36</td>
<td>35.6%</td>
<td>33</td>
<td>32.7%</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value: 15.752</td>
<td>df: 12</td>
<td>p-value: 0.203</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>23</td>
<td>8.3%</td>
<td>102</td>
<td>37.0%</td>
<td>94</td>
<td>34.1%</td>
</tr>
</tbody>
</table>
Chapter 4 : Data Analysis & Research Findings

\(H_{08} \) There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement increases realism and makes experience more realistic.

\(H_{A8} \) There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement increases realism and makes experience more realistic.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis \(H_1 \) “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement increases realism and makes experience more realistic.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placement increases realism and makes experience more realistic.

The relation between the family monthly income was significant \(\chi^2(16, N=276)=31.758, p=0.011 \)

The p value is \(p \leq 0.05 \) for the chi-square \(\chi^2 \) tests of independence performed to examine the association between the background variable (family monthly income).

By looking at the % frequency distribution the relation with family monthly income of the respondents (on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) the highest to agree at 53.4% were belonging in the income bracket of 10,001-15000 and later the second highest to agree were from the highest income bracket group of >25000. In totality also 45.3 % agree, 34.1% are neutral and 20.7% are disagreeing. So we can say that brand placement adds to realism for many.
Table 4.2.9: Cross tabulation - Percentage frequency distribution of all Background variables of respondents(age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion of being in favor of use of real brands over fake brands in movies using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents being in favor of use of real brands over fake brands in movies</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background variables</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Age yrs. ≤20</td>
<td>21</td>
<td>25.0</td>
<td>23</td>
<td>27.4</td>
<td>19</td>
<td>22.6</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>34</td>
<td>27.9</td>
<td>38</td>
<td>31.1</td>
<td>26</td>
<td>21.3</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>6</td>
<td>13.3</td>
<td>17</td>
<td>37.8</td>
<td>13</td>
<td>28.9</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>1</td>
<td>4.0</td>
<td>7</td>
<td>28.0</td>
<td>10</td>
<td>40.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 20.495</td>
<td>df- 12</td>
<td>p-value- 0.058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender Male</td>
<td>27</td>
<td>19.6</td>
<td>48</td>
<td>34.8</td>
<td>37</td>
<td>26.8</td>
</tr>
<tr>
<td>Female</td>
<td>35</td>
<td>25.4</td>
<td>37</td>
<td>26.8</td>
<td>31</td>
<td>22.5</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 4.324</td>
<td>df- 4</td>
<td>p-value- 0.364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤10,000</td>
<td>7</td>
<td>11.7</td>
<td>17</td>
<td>28.3</td>
<td>19</td>
<td>31.7</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>10</td>
<td>22.2</td>
<td>10</td>
<td>22.2</td>
<td>16</td>
<td>35.6</td>
</tr>
<tr>
<td>15001-25000</td>
<td>8</td>
<td>22.9</td>
<td>12</td>
<td>34.3</td>
<td>10</td>
<td>28.6</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>9</td>
<td>28.1</td>
<td>9</td>
<td>28.1</td>
<td>4</td>
<td>12.5</td>
</tr>
<tr>
<td>>25000</td>
<td>28</td>
<td>26.9</td>
<td>37</td>
<td>35.6</td>
<td>19</td>
<td>18.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 31.805</td>
<td>df- 16</td>
<td>p-value- 0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation Business</td>
<td>33</td>
<td>27.3</td>
<td>34</td>
<td>28.1</td>
<td>29</td>
<td>24.0</td>
</tr>
<tr>
<td>Salaried</td>
<td>18</td>
<td>32.7</td>
<td>21</td>
<td>38.2</td>
<td>11</td>
<td>20.0</td>
</tr>
<tr>
<td>Retired</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.1</td>
<td>4</td>
<td>36.4</td>
</tr>
<tr>
<td>Farmer</td>
<td>7</td>
<td>16.7</td>
<td>17</td>
<td>40.5</td>
<td>7</td>
<td>16.7</td>
</tr>
<tr>
<td>Professional</td>
<td>3</td>
<td>14.3</td>
<td>6</td>
<td>28.6</td>
<td>4</td>
<td>26.8</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>3.8</td>
<td>6</td>
<td>23.1</td>
<td>11</td>
<td>42.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 42.072</td>
<td>df- 20</td>
<td>p-value- 0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying UG</td>
<td>49</td>
<td>25.5</td>
<td>53</td>
<td>27.6</td>
<td>47</td>
<td>24.5</td>
</tr>
<tr>
<td>PG</td>
<td>13</td>
<td>15.5</td>
<td>32</td>
<td>38.1</td>
<td>21</td>
<td>25.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 7.304</td>
<td>df-20</td>
<td>p-value- 0.121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Science</td>
<td>11</td>
<td>18.3</td>
<td>13</td>
<td>21.7</td>
<td>23</td>
<td>38.3</td>
</tr>
<tr>
<td>Commerce</td>
<td>8</td>
<td>14.5</td>
<td>21</td>
<td>38.2</td>
<td>14</td>
<td>25.5</td>
</tr>
<tr>
<td>Arts</td>
<td>14</td>
<td>23.3</td>
<td>18</td>
<td>30.0</td>
<td>13</td>
<td>21.7</td>
</tr>
<tr>
<td>Technical</td>
<td>29</td>
<td>28.7</td>
<td>33</td>
<td>32.7</td>
<td>18</td>
<td>17.8</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 14.131</td>
<td>df-12</td>
<td>p-value- 0.292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>62</td>
<td>22.5</td>
<td>85</td>
<td>30.8</td>
<td>68</td>
<td>24.6</td>
</tr>
</tbody>
</table>
H₀₉ There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of use of real brands over fake brands in movies.

H₁₉ There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of use of real brands over fake brands in movies.

Interpretation: The null hypothesis should be rejected in favor of the alternative hypothesis H₁ “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of use of real brands over fake brands in movies.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion of being in favor of use of real brands over fake brands in movies.

The relation between the family monthly income was significant \(\chi^2(16, N=276)=31.805, p=0.011 \)

The relation between the fathers occupation was significant \(\chi^2(20, N=276)=42.072, p=0.003 \)

The p value is \(p \leq 0.05 \) for the chi-square \(\chi^2 \) tests of independence performed to examine the association between the background variable (family monthly income, fathers occupation).

By looking at the % frequency distribution the relation with family monthly income of the respondents (on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) Out of the total 276 respondents 53% are in favor of use of real brands over fake brands and in that also the highest are from the highest income bracket of >25000 with 62.5%. But when we look at the % frequency distribution of the relation between fathers occupation of the
respondents (on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) only 9.1% whose fathers are retired are in favour of use of real brands in the movies.

Table 4.2.10: Cross tabulation : Percentage frequency distribution of all Background variables of respondents(age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion of being in favor of brands being integrated in the script of the film using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>9</td>
<td>10.7</td>
<td>23</td>
<td>27.4</td>
<td>25</td>
<td>29.8</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>15</td>
<td>12.3</td>
<td>32</td>
<td>26.2</td>
<td>44</td>
<td>36.1</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>2</td>
<td>4.4</td>
<td>18</td>
<td>40.0</td>
<td>14</td>
<td>31.1</td>
</tr>
<tr>
<td>>24yrs.</td>
<td>4</td>
<td>16.0</td>
<td>8</td>
<td>32.0</td>
<td>5</td>
<td>20.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>14.485</td>
<td>df</td>
<td>12</td>
<td>p-value</td>
<td>0.271</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16</td>
<td>11.6</td>
<td>46</td>
<td>33.3</td>
<td>35</td>
<td>25.4</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>10.1</td>
<td>35</td>
<td>25.4</td>
<td>53</td>
<td>38.4</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>10.231</td>
<td>df</td>
<td>4</td>
<td>p-value</td>
<td>0.037</td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10,000</td>
<td>10</td>
<td>16.7</td>
<td>8</td>
<td>13.3</td>
<td>14</td>
<td>23.3</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>7</td>
<td>15.6</td>
<td>17</td>
<td>37.8</td>
<td>8</td>
<td>17.8</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>4</td>
<td>11.4</td>
<td>12</td>
<td>34.3</td>
<td>8</td>
<td>22.9</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>3</td>
<td>9.4</td>
<td>10</td>
<td>31.3</td>
<td>10</td>
<td>31.3</td>
</tr>
<tr>
<td>>25000</td>
<td>6</td>
<td>5.8</td>
<td>34</td>
<td>32.7</td>
<td>48</td>
<td>46.2</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>43.278</td>
<td>df</td>
<td>16</td>
<td>p-value</td>
<td>0.000</td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>12</td>
<td>9.9</td>
<td>36</td>
<td>29.8</td>
<td>38</td>
<td>31.4</td>
</tr>
<tr>
<td>Salaried</td>
<td>6</td>
<td>10.9</td>
<td>17</td>
<td>30.9</td>
<td>26</td>
<td>47.3</td>
</tr>
<tr>
<td>Retired</td>
<td>3</td>
<td>27.3</td>
<td>3</td>
<td>27.3</td>
<td>1</td>
<td>9.1</td>
</tr>
<tr>
<td>Farmer</td>
<td>5</td>
<td>11.9</td>
<td>10</td>
<td>23.8</td>
<td>7</td>
<td>16.7</td>
</tr>
<tr>
<td>Professional</td>
<td>2</td>
<td>9.5</td>
<td>7</td>
<td>33.3</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>7.7</td>
<td>8</td>
<td>30.8</td>
<td>9</td>
<td>34.6</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>26.917</td>
<td>df</td>
<td>20</td>
<td>p-value</td>
<td>0.138</td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>24</td>
<td>12.5</td>
<td>56</td>
<td>29.2</td>
<td>57</td>
<td>29.7</td>
</tr>
<tr>
<td>PG</td>
<td>6</td>
<td>7.1</td>
<td>25</td>
<td>29.8</td>
<td>31</td>
<td>36.9</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>2.652</td>
<td>df</td>
<td>4</td>
<td>p-value</td>
<td>0.618</td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>8</td>
<td>13.3</td>
<td>17</td>
<td>28.3</td>
<td>13</td>
<td>21.7</td>
</tr>
<tr>
<td>Commerce</td>
<td>3</td>
<td>5.5</td>
<td>16</td>
<td>29.1</td>
<td>22</td>
<td>40.0</td>
</tr>
<tr>
<td>Arts</td>
<td>8</td>
<td>13.3</td>
<td>13</td>
<td>21.7</td>
<td>19</td>
<td>31.7</td>
</tr>
<tr>
<td>Technical</td>
<td>11</td>
<td>10.9</td>
<td>35</td>
<td>34.7</td>
<td>34</td>
<td>33.7</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>12.081</td>
<td>df</td>
<td>12</td>
<td>p-value</td>
<td>0.439</td>
</tr>
</tbody>
</table>

| Column total | Count | 30 | 10.9 | 81 | 29.3 | 88 | 31.9 | 48 | 17.4 | 29 | 10.5 | 276 |
Chapter 4 : Data Analysis & Research Findings

H_{010} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of brands being integrated in the script of the film.

H_{A10} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of brands being integrated in the script of the film.

Interpretation: The null hypothesis should be rejected in favor of the alternative hypothesis H_1 “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of being in favor of brands being integrated in the script of the film.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion of being in favor of brands being integrated in the script of the film.

The relation between the gender was significant $\chi^2(4,N=276)=10.231, p=0.037$

The relation between the family monthly income was significant $\chi^2(16,N=276)=43.278, p=0.000$

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (gender, family monthly income).

By looking at the % frequency distribution the relation with gender of the respondents (on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) Male at 45% and female at 36%, therefore male respondents are more in favor of brands being integrated in the script.
of the film. The % frequency distribution of family monthly income of respondents shows that the respondents belonging from the income bracket of 10,001-15000 are the ones who are highest at 53.4% in favor of brands being integrated in the script of the film. Whereas the respondents belonging from the highest income bracket of >25000 were least in favor of brands being integrated in the script of the film at 15.4%.

Series of likert scale questions from Q15 to Q19 are combined as Q1519 to arrive at a score or series of scores for a particular respondent. Likert scale in the Ques 15 to Ques 19 is reduced to nominal level by combining and giving scores as. Strongly agree & Agree =2, Neutral =1, Disagree & Strongly Disagree =0. These scores are computed as the mean of all selected questions Q15 to Q19. The Q1519 is depicting the Behavior- credibility, realism (due to integration in the storyline) & film congruity. The belief about brand placement enhancing realism & credibility factor due to integration of brands in the storyline was tested by taking the 5 statements in the questionnaire (Q15 to Q19). The response ratings for Ques 15 negatively worded statement were reverse coded to facilitate analysis & ensure that the overall score presented an accurate reflection of the subject’s assessment. This means the ratings, which indicated disagreement (strongly disagree) with the Q15 received higher weight and which indicated agreement (strongly agree) received lesser weight. By running descriptive statistics mean scores were found for each variable

<table>
<thead>
<tr>
<th>Table 4.2.11: t-test for independent samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Awareness of Brand Placement as marketing tool(Q13)</td>
</tr>
<tr>
<td>Q1519 Realism, credibility & film congruity enhancement</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

86
H_{011} The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents being aware and not being aware about brand placements as marketing tool are equal using independent t-test.

H_{A11} The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents being aware and not being aware about brand placements as marketing tool are not equal using independent t-test.

Interpretation: Based on the statistical test, we failed to reject the H_{0} i.e. The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents being aware and not being aware about brand placements as marketing tool are equal using independent t-test. H_{0}=\mu_{yes}=\mu_{no}

Result indicate that the average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents being aware(M=5.87,SD=2.188) and not being aware(M=6.45,SD=2.340) about brand placements as marketing tool are equal, t(274)=1.245, p=0.214.

4.2.4 Analysis of RQ 5

RQ5 Do viewers / consumers recognize the brand names that were integrated with the script (film or broadcast program)? Do they find them more credible?
Table 4.2.12: Cross tabulation: Percentage frequency distribution of all Background variables of respondents(age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placement in movies bring awareness about brands using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>12</td>
<td>14.3</td>
<td>61</td>
<td>72.6</td>
<td>11</td>
<td>13.1</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>21</td>
<td>17.2</td>
<td>73</td>
<td>59.8</td>
<td>28</td>
<td>23.0</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>9</td>
<td>20.0</td>
<td>27</td>
<td>60.0</td>
<td>9</td>
<td>20.0</td>
<td>45</td>
</tr>
<tr>
<td>>24yrs</td>
<td>6</td>
<td>24.0</td>
<td>16</td>
<td>64.0</td>
<td>3</td>
<td>12.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 5.949</td>
<td>df-6</td>
<td></td>
<td>Value- 0.429</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
<td>13.0</td>
<td>96</td>
<td>69.6</td>
<td>24</td>
<td>17.4</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>30</td>
<td>21.7</td>
<td>81</td>
<td>58.7</td>
<td>27</td>
<td>19.6</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 4.448</td>
<td>df-2</td>
<td></td>
<td>Value- 0.108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income ≤10,000</td>
<td>10</td>
<td>16.7</td>
<td>39</td>
<td>65.0</td>
<td>11</td>
<td>18.3</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>12</td>
<td>26.7</td>
<td>31</td>
<td>68.9</td>
<td>2</td>
<td>4.4</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>8</td>
<td>22.9</td>
<td>24</td>
<td>68.9</td>
<td>3</td>
<td>8.6</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>8</td>
<td>25.0</td>
<td>19</td>
<td>59.4</td>
<td>5</td>
<td>15.6</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>10</td>
<td>9.6</td>
<td>64</td>
<td>61.5</td>
<td>30</td>
<td>28.8</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 20.869</td>
<td>df-8</td>
<td></td>
<td>Value- 0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>20</td>
<td>16.5</td>
<td>76</td>
<td>62.8</td>
<td>25</td>
<td>20.7</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>12</td>
<td>21.8</td>
<td>30</td>
<td>54.5</td>
<td>13</td>
<td>23.6</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>1</td>
<td>9.1</td>
<td>8</td>
<td>72.7</td>
<td>2</td>
<td>18.2</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>9</td>
<td>21.4</td>
<td>29</td>
<td>69.0</td>
<td>4</td>
<td>9.5</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>4</td>
<td>19.0</td>
<td>16</td>
<td>76.2</td>
<td>1</td>
<td>4.8</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>7.7</td>
<td>18</td>
<td>69.2</td>
<td>6</td>
<td>23.1</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 9.991</td>
<td>df-10</td>
<td></td>
<td>Value- 0.441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>32</td>
<td>16.7</td>
<td>129</td>
<td>67.2</td>
<td>31</td>
<td>16.1</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>16</td>
<td>19.0</td>
<td>48</td>
<td>57.1</td>
<td>20</td>
<td>23.8</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 2.967</td>
<td>df-2</td>
<td></td>
<td>Value- 0.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>15</td>
<td>25.0</td>
<td>39</td>
<td>65.0</td>
<td>6</td>
<td>10.0</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>10</td>
<td>18.2</td>
<td>35</td>
<td>63.6</td>
<td>10</td>
<td>18.2</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>10</td>
<td>16.7</td>
<td>43</td>
<td>71.7</td>
<td>7</td>
<td>11.7</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>13</td>
<td>12.9</td>
<td>60</td>
<td>59.4</td>
<td>28</td>
<td>27.7</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value- 12.628</td>
<td>df-6</td>
<td></td>
<td>Value- 0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>48</td>
<td>17.4</td>
<td>177</td>
<td>64.1</td>
<td>51</td>
<td>18.5</td>
<td>276</td>
</tr>
</tbody>
</table>
H_{012} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement in movies bring awareness about brands.

H_{A12} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondent’s opinion that brand placement in movies bring awareness about brands.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_1 “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies bring awareness about brands.”

Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placement in movies bring awareness about brands.

The relation between the family monthly income was significant
\[\chi^2(8, N=276) = 20.869, p=0.008 \]

The relation between the faculty was significant
\[\chi^2(6, N=276) = 12.628, p=0.049 \]

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (family monthly income, faculty).
Table 4.2.13: Cross tabulation: Percentage frequency distribution of respondents opinion that the feelings towards the brand is affected by the way it is used in movie with respondents behavior to discuss brands after watching them in movie in theatre using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents behavior to discuss brands after watching them in movie in theatre</th>
<th>Respondents opinion that the feelings towards the brand is affected by the way it is used in movie</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Always</td>
<td>Very Often</td>
<td>Sometimes</td>
<td>Rarely</td>
<td>Never</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Always</td>
<td>4</td>
<td>0</td>
<td>66.7</td>
<td>2</td>
<td>33.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very often</td>
<td>7</td>
<td>5</td>
<td>11.1</td>
<td>25</td>
<td>55.6</td>
<td>3</td>
<td>6.7</td>
</tr>
<tr>
<td>Sometimes</td>
<td>16</td>
<td>11</td>
<td>8.8</td>
<td>60</td>
<td>48.0</td>
<td>22</td>
<td>17.6</td>
</tr>
<tr>
<td>Rarely</td>
<td>6</td>
<td>1</td>
<td>1.7</td>
<td>21</td>
<td>35.6</td>
<td>21</td>
<td>35.6</td>
</tr>
<tr>
<td>Never</td>
<td>3</td>
<td>14</td>
<td>34.1</td>
<td>9</td>
<td>22.0</td>
<td>15</td>
<td>36.6</td>
</tr>
<tr>
<td>Column Total</td>
<td>36</td>
<td>12</td>
<td>12.8</td>
<td>122</td>
<td>44.2</td>
<td>55</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Chi-Square Value- 52.247 df-16 p-value-0.000

\(H_{013} \) There is no association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre.

\(H_{A13} \) There is an association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis \(H_1 \) “There is an association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre”
Chi-square test of independence was performed to examine the relation and it was significant

\[\chi^2(16, N=276) = 52.247, \ p=0.000 \]

The p value is \(p \leq 0.05 \) for the chi-square \(\chi^2 \) tests of independence performed to examine the association.

Table 4.2.14: t-test for independent samples

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>Std. D</th>
<th>t-value</th>
<th>d.f</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television watching per day in minutes-Q7</td>
<td>M</td>
<td>138</td>
<td>170.87</td>
<td>84.82</td>
<td>2.586</td>
<td>274</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>143.70</td>
<td>89.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movies watched per month in theatre –Q10</td>
<td>M</td>
<td>138</td>
<td>2.44</td>
<td>1.32</td>
<td>1.494</td>
<td>274</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>2.20</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movies watched last month in theatre –Q11</td>
<td>M</td>
<td>138</td>
<td>1.65</td>
<td>1.23</td>
<td>1.053</td>
<td>274</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>1.51</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realism, credibility & film congruity-enhancement Q1519</td>
<td>M</td>
<td>138</td>
<td>6.021</td>
<td>2.206</td>
<td>0.737</td>
<td>274</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>5.82</td>
<td>2.204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure of films from aided recall scores in -Q20 A</td>
<td>M</td>
<td>138</td>
<td>7.77</td>
<td>2.05</td>
<td>2.524</td>
<td>274</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>7.13</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score of correctness from aided recall in -Q20 B</td>
<td>M</td>
<td>138</td>
<td>7.31</td>
<td>1.66</td>
<td>5.047</td>
<td>274</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>138</td>
<td>6.24</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(H_{014} \) The average of the following parameters(i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the gender group are equal using independent t-test.

\(H_{A14} \) The average of the following parameters(i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the gender group are not equal using independent t-test.
Interpretation: The null hypothesis (H_0) should be rejected in favor of alternative hypothesis (H_1) as the average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the gender group are not equal using independent t-test.

Result indicate that male respondents TV watching minutes per day was higher ($M=170.87, SD=84.82$) than female ($M=143.70, SD=89.70$), $t(274)=2.5, p=0.010$.

Male respondents exposure of films was higher ($M=7.77, SD=2.05$) than female ($M=7.13, SD=2.17$), $t(274)=2.5, p=0.012$.

Male respondents correctness score was higher ($M=1.66, SD=1.86$) than female ($M=1.66, SD=1.86$), $t(274)=5.047, p=0.000$.

Table 4.2.15: t-test for independent samples

<table>
<thead>
<tr>
<th>Studying</th>
<th>N</th>
<th>Mean</th>
<th>Std. D</th>
<th>t-value</th>
<th>d.f</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television watching per day in minutes-Q7</td>
<td>UG</td>
<td>192</td>
<td>154.38</td>
<td>86.88</td>
<td>0.828</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>163.93</td>
<td>91.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movies watched per month in theatre –Q10</td>
<td>UG</td>
<td>192</td>
<td>2.49</td>
<td>1.354</td>
<td>3.306</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>1.93</td>
<td>1.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movies watched last month in theatre–Q11</td>
<td>UG</td>
<td>192</td>
<td>1.63</td>
<td>1.208</td>
<td>1.110</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>1.46</td>
<td>.975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realism, credibility & film congruity-enhancement Q1519</td>
<td>UG</td>
<td>192</td>
<td>5.807</td>
<td>2.114</td>
<td>1.331</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>6.190</td>
<td>2.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure of films from aided recall scores in -Q20 A</td>
<td>UG</td>
<td>192</td>
<td>7.413</td>
<td>2.137</td>
<td>0.479</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>7.547</td>
<td>2.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score of correctness from aided recall in -Q20 B</td>
<td>UG</td>
<td>192</td>
<td>6.75</td>
<td>1.905</td>
<td>0.373</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>84</td>
<td>6.84</td>
<td>1.696</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4: Data Analysis & Research Findings

H$_{015}$ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the studying group are equal using independent t-test.

H$_{A15}$ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the studying group are not equal using independent t-test.

Interpretation: The null hypothesis (H$_0$) should be rejected in favor of alternative hypothesis (H$_1$) as the average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the studying group are not equal using independent t-test.

Result indicate that the movies watched per month in theatre by UG respondents is higher ($M=2.49, SD=1.354$) than the PG respondents ($M=1.93, SD=1.20$), $t(274)=3.306, p=0.001$

<table>
<thead>
<tr>
<th>Age</th>
<th>Q7 (min of tv watched per day)</th>
<th>Q10 Watch Movies per month</th>
<th>Q11 Movies watched last month</th>
<th>Q1519 Realism enhancement</th>
<th>Q20A Movie exposure aided score</th>
<th>Q20B Correctness score from aided recall</th>
</tr>
</thead>
<tbody>
<tr>
<td><20 years</td>
<td>N</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Mean</td>
<td>151.79</td>
<td>2.83</td>
<td>1.80</td>
<td>5.5595</td>
<td>7.7229</td>
<td>7.1786</td>
</tr>
<tr>
<td>Std D</td>
<td>80.707</td>
<td>1.471</td>
<td>1.333</td>
<td>2.10193</td>
<td>2.17140</td>
<td>1.79454</td>
</tr>
<tr>
<td>20-22 years</td>
<td>N</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>Mean</td>
<td>163.28</td>
<td>2.07</td>
<td>1.47</td>
<td>6.1475</td>
<td>7.4180</td>
<td>6.5984</td>
</tr>
<tr>
<td>Std D</td>
<td>95.185</td>
<td>1.176</td>
<td>1.107</td>
<td>2.25144</td>
<td>2.13526</td>
<td>1.90545</td>
</tr>
<tr>
<td>23-24 years</td>
<td>N</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Mean</td>
<td>165.33</td>
<td>2.11</td>
<td>1.44</td>
<td>6.3778</td>
<td>7.7333</td>
<td>6.8222</td>
</tr>
<tr>
<td>Std D</td>
<td>84.520</td>
<td>1.301</td>
<td>1.013</td>
<td>2.28919</td>
<td>1.83897</td>
<td>1.81269</td>
</tr>
<tr>
<td>>24 years</td>
<td>N</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Mean</td>
<td>132.00</td>
<td>2.24</td>
<td>1.64</td>
<td>5.2400</td>
<td>6.2400</td>
<td>6.2800</td>
</tr>
<tr>
<td>Std D</td>
<td>82.158</td>
<td>1.200</td>
<td>1.700</td>
<td>1.89912</td>
<td>2.20378</td>
<td>1.59478</td>
</tr>
<tr>
<td>Total</td>
<td>N</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td>Mean</td>
<td>157.28</td>
<td>2.32</td>
<td>1.58</td>
<td>5.9239</td>
<td>7.4545</td>
<td>6.7826</td>
</tr>
<tr>
<td>Std D</td>
<td>88.195</td>
<td>1.333</td>
<td>1.143</td>
<td>2.20364</td>
<td>2.13605</td>
<td>1.84189</td>
</tr>
<tr>
<td>F- Value</td>
<td>$F(3,272)=1.108</td>
<td>$F(3,272)=6.391</td>
<td>$F(3,272)=1.657</td>
<td>$F(3,272)=2.671</td>
<td>$F(3,272)=3.491</td>
<td>$F(3,272)=2.363</td>
</tr>
<tr>
<td>P-value</td>
<td>0.346</td>
<td>0.000</td>
<td>0.177</td>
<td>0.048</td>
<td>0.016</td>
<td>0.072</td>
</tr>
</tbody>
</table>

Post-Hoc Comparisons to see exactly which pairs of groups are significantly different. (Scheffes method)

<table>
<thead>
<tr>
<th><20yrs & 20-22yrs</th>
<th>p-value=0.001</th>
<th>No pairs found significantly different</th>
<th><20yrs & >24yrs</th>
<th>p-value=0.025</th>
<th>23-24yrs & >24yrs</th>
<th>p-value=0.047</th>
</tr>
</thead>
</table>

Table 4.2.16: One-way anova test and Scheffes Post hoc test for Age
$H_{0,16}$ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the age group are equal using one-way anova test.

$H_{A,16}$ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the age group are not equal using one-way anova test.

Interpretation: A one way ANOVA between subjects was conducted to compare the effect of age groups on the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores). There was a significant effect of age group on Q10 (movies watched per month) $F(3,272)=6.391, p=0.000$, Q15 (realism) $F(3,272)=2.671, p=0.048$, Q20 (exposure of aided score) $F(3,271)=3.491, p=0.016$ at p-value <0.05 level for the 4 age groups.

The F test for age was significant $F(3,272)=6.391, p=0.000$ i.e. $p<0.05$. This means that there was a significant effect of age on movies watched per month by the respondents. Four post hoc comparisons using the Scheffes method was conducted for Q10 (movies watched per month). The comparison of age <20 yrs $(M=2.83, SD=1.471)$ and $20-22$ yrs $(M=2.07, SD=1.176)$ was significant at $p=0.001$. The comparison of <20 yrs $(M=2.83, SD=1.471)$ and $23-24$ yrs $(M=2.11, SD=1.301)$ was significant at $p=0.030$.

The F test for age was significant $F(3,272)=3.491, p=0.016$ i.e. $p<0.05$. This means that there was a significant effect of age on the exposure of movies by respondents for the aided recall score. Four post hoc comparisons using the Scheffes method was conducted for Q20 (exposure of movies). The comparison of <20 yrs $(M=7.722, SD=2.171)$ and >24 yrs $(M=6.24, SD=2.203)$ was significant at $p=0.025$. The comparison of $23-24$ yrs $(M=7.73, SD=1.838)$ and >24 yrs $(M=6.24, SD=2.203)$ was significant at $p=0.047$.
Table 4.2.17: One way Anova Test and Scheffes Post hoc test for Monthly Income

<table>
<thead>
<tr>
<th>Monthly income</th>
<th>Q7 (min of tv watched per day)</th>
<th>Q10 Watch Movies per month</th>
<th>Q11 Movies watched last month</th>
<th>Q1519 Realism enhancement</th>
<th>Q20A Movie exposure aided score</th>
<th>Q20B Correctness score from aided recall</th>
</tr>
</thead>
<tbody>
<tr>
<td><=10,000</td>
<td>N 60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>(1)</td>
<td>Mean 113.30</td>
<td>2.40</td>
<td>1.47</td>
<td>4.9333</td>
<td>6.9833</td>
<td>6.4833</td>
</tr>
<tr>
<td></td>
<td>Std D 77.149</td>
<td>1.317</td>
<td>1.033</td>
<td>1.91220</td>
<td>2.20548</td>
<td>1.95276</td>
</tr>
<tr>
<td>10,001-15,000</td>
<td>N 45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>(2)</td>
<td>Mean 130.00</td>
<td>2.62</td>
<td>1.82</td>
<td>5.8222</td>
<td>7.2000</td>
<td>6.4000</td>
</tr>
<tr>
<td></td>
<td>Std D 78.855</td>
<td>1.284</td>
<td>1.173</td>
<td>1.89643</td>
<td>2.24216</td>
<td>1.88776</td>
</tr>
<tr>
<td>15,001-20,000</td>
<td>N 35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>(3)</td>
<td>Mean 144.86</td>
<td>2.49</td>
<td>1.91</td>
<td>5.7143</td>
<td>7.0857</td>
<td>6.3143</td>
</tr>
<tr>
<td></td>
<td>Std D 85.004</td>
<td>1.422</td>
<td>1.269</td>
<td>2.35861</td>
<td>2.14711</td>
<td>1.54865</td>
</tr>
<tr>
<td>20,001-25,000</td>
<td>N 32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>(4)</td>
<td>Mean 161.25</td>
<td>2.56</td>
<td>1.75</td>
<td>6.1563</td>
<td>7.5313</td>
<td>7.0000</td>
</tr>
<tr>
<td></td>
<td>Std D 77.989</td>
<td>1.585</td>
<td>1.524</td>
<td>2.35700</td>
<td>1.84888</td>
<td>1.74134</td>
</tr>
<tr>
<td>>25,000</td>
<td>N 104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>(5)</td>
<td>Mean 197.31</td>
<td>2.02</td>
<td>1.38</td>
<td>1.38</td>
<td>7.9417</td>
<td>7.2115</td>
</tr>
<tr>
<td></td>
<td>Std D 85.845</td>
<td>1.207</td>
<td>0.967</td>
<td>0.967</td>
<td>2.06191</td>
<td>1.80438</td>
</tr>
<tr>
<td>Total</td>
<td>N 276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>275</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Mean 157.28</td>
<td>2.32</td>
<td>2.32</td>
<td>1.58</td>
<td>7.4545</td>
<td>6.7826</td>
</tr>
<tr>
<td></td>
<td>Std D 88.195</td>
<td>1.333</td>
<td>1.333</td>
<td>1.143</td>
<td>2.13605</td>
<td>1.84189</td>
</tr>
<tr>
<td>P-value</td>
<td>0.000</td>
<td>0.050</td>
<td>0.045</td>
<td>0.000</td>
<td>0.039</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Post-Hoc Comparisons to see exactly which pairs of groups are significantly different. (Scheffes method)

<table>
<thead>
<tr>
<th></th>
<th><=10,000 & >25,000, p-value=0.000</th>
<th>10,001-15000 & >25,000, p-value=0.000</th>
<th>15,001-20,000 & >25,000, p-value=0.032</th>
</tr>
</thead>
<tbody>
<tr>
<td><=10,000 & >25,000</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
</tr>
<tr>
<td>10,001-15,000 & >25,000</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
</tr>
<tr>
<td>15,001-20,000 & >25,000</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
</tr>
</tbody>
</table>

95
Chapter 4: Data Analysis & Research Findings

H_{017} The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the family monthly income are equal using one-way anova test

H_{A17} The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the family monthly income are not equal using one-way anova test

Interpretation: A one way ANOVA between subjects was conducted to compare the effect of family monthly income on the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores). There was a significant effect of family monthly income on Q7 (min of tv watched per day) $F(4,271)=11.963, p=0.000$, Q10 (watch movies per month) $F(4,271)=2.406, p=0.050$, Q11 (movies watched last month) $F(4,271)=2.466, p=0.045$, Q15 (realism) $F(4,271)=5.596, p=0.000$, Q20A (exposure of aided score) $F(4,271)=2.557, p=0.039$, Q20B (correctness score from aided recall) $F(4,271)=3.057, p=0.017$ at p-value <0.05 level for the 5 family monthly income groups.

This means that there was a significant effect of family monthly income on minutes of tv watched per day, movies watched per month, movies watched last month, realism enhancement, movie exposure aided score, correctness score from aided recall by the respondents. Five post hoc comparisons using the Scheffé method was conducted for Q7 (min of tv watched per day). The comparison of family monthly income $\leq 10,000$ ($M=113.50, SD=77.149$) and $>25,000$ ($M=197.31, SD=88.195$) was significant at $p=0.000$. The comparison of $10,001-15,000$ ($M=130.00, SD=78.855$) and $>25,000$ ($M=197.31, SD=88.195$) was significant at $p=0.032$.

The F test for family monthly income was significant $F(4,271)=5.596, p=0.000$ i.e. $p<0.05$. This means that there was a significant effect of family monthly income on the realism enhancement due to brand placement by respondents. Five post hoc comparisons using the Scheffé method was conducted for Q15 (realism...
The comparison of \(\leq 10,000 (M=4.933, SD=1.9122) \) and \(>25,000 (M=197.31, SD=88.195) \) was significant at \(p=0.000 \).

Table 4.2.18: One way Anova Test and Scheffes Post hoc test for Fathers Occupation

<table>
<thead>
<tr>
<th>Fathers Occupation</th>
<th>Q7 (min of tv watched per day)</th>
<th>Q10 Watch Movies per month</th>
<th>Q11 Movies watched last month</th>
<th>Q1519 Realism enhancement</th>
<th>Q20A Movie exposure aided score</th>
<th>Q20B Correctness score from aided recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business man (1)</td>
<td>N 121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>Mean</td>
<td>158.18</td>
<td>2.25</td>
<td>1.61</td>
<td>5.9835</td>
<td>7.7851</td>
<td>6.9669</td>
</tr>
<tr>
<td>Std D</td>
<td>84.853</td>
<td>1.227</td>
<td>1.186</td>
<td>2.34870</td>
<td>2.07045</td>
<td>1.75563</td>
</tr>
<tr>
<td>Salaried (2)</td>
<td>N 55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Mean</td>
<td>184.91</td>
<td>2.11</td>
<td>1.38</td>
<td>7.0000</td>
<td>7.4259</td>
<td>6.9818</td>
</tr>
<tr>
<td>Std D</td>
<td>97.085</td>
<td>1.436</td>
<td>1.225</td>
<td>1.74271</td>
<td>2.23693</td>
<td>1.96724</td>
</tr>
<tr>
<td>Retired (3)</td>
<td>N 55</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>184.91</td>
<td>2.36</td>
<td>1.64</td>
<td>5.2727</td>
<td>8.0000</td>
<td>6.2727</td>
</tr>
<tr>
<td>Std D</td>
<td>97.085</td>
<td>1.206</td>
<td>1.120</td>
<td>1.95402</td>
<td>2.64575</td>
<td>1.48936</td>
</tr>
<tr>
<td>Farmer (4)</td>
<td>N 11</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Mean</td>
<td>163.64</td>
<td>2.93</td>
<td>1.83</td>
<td>5.0714</td>
<td>7.0238</td>
<td>6.4746</td>
</tr>
<tr>
<td>Std D</td>
<td>93.303</td>
<td>1.421</td>
<td>1.167</td>
<td>2.12296</td>
<td>2.04209</td>
<td>2.15500</td>
</tr>
<tr>
<td>Professional (5)</td>
<td>N 42</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Mean</td>
<td>137.14</td>
<td>2.14</td>
<td>1.57</td>
<td>5.7619</td>
<td>7.0476</td>
<td>6.8190</td>
</tr>
<tr>
<td>Std D</td>
<td>79.550</td>
<td>1.153</td>
<td>.926</td>
<td>2.04707</td>
<td>2.33401</td>
<td>1.59613</td>
</tr>
<tr>
<td>Other (6)</td>
<td>N 21</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Mean</td>
<td>161.43</td>
<td>2.27</td>
<td>1.42</td>
<td>5.1538</td>
<td>6.7692</td>
<td>6.2308</td>
</tr>
<tr>
<td>Std D</td>
<td>85.105</td>
<td>1.458</td>
<td>.857</td>
<td>1.86959</td>
<td>1.79572</td>
<td>1.68066</td>
</tr>
<tr>
<td>Total</td>
<td>N 276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td>Mean</td>
<td>157.28</td>
<td>2.32</td>
<td>1.58</td>
<td>5.9239</td>
<td>7.4545</td>
<td>6.7826</td>
</tr>
<tr>
<td>Std D</td>
<td>88.195</td>
<td>1.333</td>
<td>1.143</td>
<td>2.20364</td>
<td>2.13605</td>
<td>1.84189</td>
</tr>
<tr>
<td>F- Value</td>
<td>F(5,270)=2.478</td>
<td>F(5,270)=2.231</td>
<td>F(5,270)=0.863</td>
<td>F(5,270)=5.102</td>
<td>F(5,270)=1.779</td>
<td>F(5,270)=1.180</td>
</tr>
<tr>
<td>P-value</td>
<td>0.032</td>
<td>0.052</td>
<td>0.506</td>
<td>0.000</td>
<td>0.117</td>
<td>0.319</td>
</tr>
<tr>
<td>Post-Hoc Comparisons to see exactly which pairs of groups are significantly different. (Scheffes method)</td>
<td>SIGNIFICANT</td>
<td>SIGNIFICANT</td>
<td>0.506</td>
<td>0.000</td>
<td>0.117</td>
<td>0.319</td>
</tr>
<tr>
<td>Salaried & Farmer, p-value=0.002</td>
<td>SIGNIFICANT</td>
<td>SIGNIFICANT</td>
<td>No pairs found significantly different</td>
<td>No pairs found significantly different</td>
<td>Salaried & other, p-value=0.023</td>
<td>Salaried & other, p-value=0.023</td>
</tr>
</tbody>
</table>
Chapter 4: Data Analysis & Research Findings

H₀₁₈ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the Fathers occupation are equal using one-way anova test.

Hₐ₁₈ The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the fathers occupation are not equal using one-way anova test.

Interpretation: A one way ANOVA between subjects was conducted to compare the effect of father’s occupation on the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores). There was a significant effect of fathers occupation on Q7 (min of tv watched per day) F(5,270)=2.478, p=0.032, Q10 (watch movies per month) F(5,270)=2.231, p=0.052, Q1519 (realism enhancement) F(5,270)=5.102, p=0.000, at p-value<0.05 level for the 6 fathers occupation groups.

This means that there was a significant effect of father’s occupation on minutes of tv watched per day, movies watched per month, realism enhancement by the respondents. Six post host comparisons using the Scheffes method was conducted for Q7 (min of tv watched per day) & Q10 (movies watched per month) but no pairs were found to be significantly different. Six post hoc comparisons using the Scheffes method was conducted for Q1519 (realism enhancement). The comparison of fathers occupation Salaried (M=7.00, SD=1.742) and farmer (M=5.0714, SD=2.122) was significant at p=0.002. The comparison of Salaried (M=7.00, SD=1.742) and other (M=5.92, SD=2.203) was significant at p=0.023.
Table 4.2.19: One way Anova Test and Scheffes Post-Hoc Test for Faculty

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Q7 (min of tv watched per day)</th>
<th>Q10 Movies watched per month</th>
<th>Q11 Movies watched last month</th>
<th>Q1519 Realism enhancement</th>
<th>Q20A Movie exposure aided score</th>
<th>Q20B Correctness score from aided recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>N</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>(1)</td>
<td>Mean</td>
<td>141.00</td>
<td>2.32</td>
<td>1.62</td>
<td>5.8000</td>
<td>7.9000</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>70.584</td>
<td>1.359</td>
<td>1.151</td>
<td>2.12969</td>
<td>2.14476</td>
</tr>
<tr>
<td>Commerce</td>
<td>N</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>(2)</td>
<td>Mean</td>
<td>175.64</td>
<td>2.42</td>
<td>1.53</td>
<td>5.9455</td>
<td>7.3889</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>98.221</td>
<td>1.474</td>
<td>1.069</td>
<td>2.04050</td>
<td>2.11390</td>
</tr>
<tr>
<td>Arts</td>
<td>N</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>(3)</td>
<td>Mean</td>
<td>128.50</td>
<td>2.63</td>
<td>1.62</td>
<td>5.0833</td>
<td>6.7667</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>83.602</td>
<td>1.473</td>
<td>1.075</td>
<td>2.15730</td>
<td>2.21219</td>
</tr>
<tr>
<td>Technical</td>
<td>N</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>(4)</td>
<td>Mean</td>
<td>174.06</td>
<td>2.09</td>
<td>1.56</td>
<td>6.4851</td>
<td>7.6337</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>89.400</td>
<td>1.105</td>
<td>1.228</td>
<td>2.22087</td>
<td>2.02348</td>
</tr>
<tr>
<td>Total</td>
<td>N</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>157.28</td>
<td>2.32</td>
<td>1.58</td>
<td>5.9239</td>
<td>7.4545</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>88.195</td>
<td>1.333</td>
<td>1.143</td>
<td>2.20364</td>
<td>2.13605</td>
</tr>
</tbody>
</table>

F- Value:
- F(3,272)=5.036
- F(3,272)=2.246
- F(3,272)=0.086
- F(3,272)=5.407
- F(3,272)=3.277
- F(3,272)=2.298

P-Value:
- 0.002
- 0.083
- 0.968
- 0.001
- 0.022
- 0.078

Post-Hoc Comparisons to see exactly which pairs of groups are significantly different: (Scheffes method)

<table>
<thead>
<tr>
<th></th>
<th>Science & Arts p-value=0.036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commerce & Arts p-value=0.038</td>
<td>Arts & Technical p-value=0.001</td>
</tr>
<tr>
<td>Technical & Arts p-value=0.016</td>
<td>Science & Arts p-value=0.036</td>
</tr>
</tbody>
</table>

H019 The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the faculty are equal using one-way anova test.
Chapter 4 : Data Analysis & Research Findings

H_{A19} The average of the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores) amongst the faculty are not equal using one-way anova test.

Interpretation: A one way ANOVA between subjects was conducted to compare the effect of respondent’s faculty on the following parameters (i.e. television watching minutes per day, movies watched per month, movies watched last month, realism, credibility & film congruity enhancement, exposure & correctness scores). There was a significant effect of respondents faculty on Q7 (min of tv watched per day) $F(3,272)=5.036, p=0.002$, Q1519 (realism enhancement) $F(3,272)=3.277, p=0.022$, at p-value <0.05 level for the 4 respondents faculty groups.

This means that there was a significant effect of respondents faculty on minutes of tv watched per day, realism enhancement and movie exposure aided score by the respondents. Four post host comparisons using the Scheffes method was conducted for Q7 (min of tv watched per day). The comparison of respondents faculty Commerce ($M=175.64, SD=98.221$) and Arts ($M=128.50, SD=83.602$) was significant at $p=0.038$ and the comparison of Technical ($M=174.06, SD=89.400$) and Arts ($M=128.50, SD=83.602$) was significant at $p=0.016$. Four post hoc comparisons using the Scheffes method was conducted for Q1519 (realism enhancement). The comparison of respondents faculty Arts ($M=5.08, SD=2.157$) and Technical ($M=6.4851, SD=2.220$) was significant at $p=0.001$. Four post hoc comparisons using the Scheffes method was conducted for Q20A (movie exposure aided score). The comparison of Respondent faculty Science ($M=7.900, SD=2.144$) and Arts ($M=6.766, SD=2.212$) was significant at $p=0.036$.

4.2.5 **Analysis of RQ 6**

$RQ6$: Do viewers perceive product placement to be ethical means of promotion?
Table 4.2.20: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents awareness of brand placement being a marketing method/tool using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Awareness that brand placement being a marketing tool</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>%</td>
<td>NO</td>
<td>%</td>
<td>ROW TOTAL</td>
</tr>
<tr>
<td>Age</td>
<td>Count</td>
<td></td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>≤20 yrs</td>
<td>75</td>
<td>89.3</td>
<td>9</td>
<td>10.7</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs</td>
<td>110</td>
<td>90.2</td>
<td>12</td>
<td>9.8</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs</td>
<td>43</td>
<td>95.6</td>
<td>2</td>
<td>4.4</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>24</td>
<td>96.0</td>
<td>1</td>
<td>4.0</td>
<td>25</td>
</tr>
<tr>
<td>Gender</td>
<td>Value- 2.350</td>
<td>df- 3</td>
<td>p-value- 0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>120</td>
<td>87.0</td>
<td>18</td>
<td>13.0</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>132</td>
<td>95.7</td>
<td>6</td>
<td>4.3</td>
<td>138</td>
</tr>
<tr>
<td>Family Monthly income</td>
<td>Value- 6.571</td>
<td>df- 0.010</td>
<td>p-value- 0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤=10,000</td>
<td>54</td>
<td>90.0</td>
<td>6</td>
<td>10.0</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>44</td>
<td>97.8</td>
<td>1</td>
<td>2.2</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>28</td>
<td>80.0</td>
<td>7</td>
<td>20.0</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>29</td>
<td>90.6</td>
<td>3</td>
<td>9.4</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>97</td>
<td>93.3</td>
<td>7</td>
<td>6.7</td>
<td>104</td>
</tr>
<tr>
<td>Fathers occupation</td>
<td>Value- 8.661</td>
<td>df- 4</td>
<td>p-value- 0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>113</td>
<td>93.4</td>
<td>8</td>
<td>6.6</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>50</td>
<td>90.9</td>
<td>5</td>
<td>9.1</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>8</td>
<td>72.7</td>
<td>3</td>
<td>27.3</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>38</td>
<td>90.5</td>
<td>4</td>
<td>9.5</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>20</td>
<td>95.2</td>
<td>1</td>
<td>4.8</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>23</td>
<td>88.5</td>
<td>3</td>
<td>11.5</td>
<td>26</td>
</tr>
<tr>
<td>Studying</td>
<td>Value- 6.164</td>
<td>df- 5</td>
<td>p-value- 0.291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>174</td>
<td>90.6</td>
<td>18</td>
<td>9.4</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>78</td>
<td>92.9</td>
<td>6</td>
<td>7.1</td>
<td>84</td>
</tr>
<tr>
<td>Faculty</td>
<td>Value- 0.367</td>
<td>df- 1</td>
<td>p-value- 0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>50</td>
<td>83.3</td>
<td>10</td>
<td>16.7</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>53</td>
<td>96.4</td>
<td>2</td>
<td>3.6</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>55</td>
<td>91.7</td>
<td>5</td>
<td>8.3</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>94</td>
<td>93.1</td>
<td>7</td>
<td>6.9</td>
<td>101</td>
</tr>
<tr>
<td>Column total</td>
<td>Value- 6.981</td>
<td>df- 3</td>
<td>p-value- 0.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>91.3</td>
<td>24</td>
<td>8.7</td>
<td>276</td>
</tr>
</tbody>
</table>
H_{020} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents' awareness of brand placement being a marketing method/tool.

H_{A20} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents' awareness of brand placement being a marketing method/tool.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_1 “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents' awareness of brand placement being a marketing method/tool.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with the respondent’s awareness of brand placement being a marketing method/tool.

The relation between the gender was significant $\chi^2(0.010,N=276)=6.571$, $p=0.019$

The p value is $p\leq0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable gender with the respondent’s awareness of brand placement being a marketing method/tool. 96% of female as compared to 85% of male are more aware of brand placement in Hindi movies being a marketing tool.

In totality it has been seen that 91.3% of respondents are well aware of brand placement in Hindi movies is a marketing technique or method.
Table 4.2.21: Cross tabulation - Percentage frequency distribution of all background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion of brand placements as an unethical marketing method using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Considering Brand Placements as an unethical marketing method</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>%</td>
<td>NO</td>
<td>%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>42</td>
<td>50.0</td>
<td>42</td>
<td>50.0</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>54</td>
<td>44.3</td>
<td>68</td>
<td>55.7</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>7</td>
<td>15.6</td>
<td>38</td>
<td>84.4</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>8</td>
<td>32.0</td>
<td>17</td>
<td>68.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>44</td>
<td>31.9</td>
<td>94</td>
<td>68.1</td>
</tr>
<tr>
<td>Female</td>
<td>67</td>
<td>48.6</td>
<td>71</td>
<td>51.4</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10,000</td>
<td>42</td>
<td>70.0</td>
<td>18</td>
<td>30.0</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>19</td>
<td>42.2</td>
<td>26</td>
<td>57.8</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>18</td>
<td>51.4</td>
<td>17</td>
<td>48.6</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>13</td>
<td>40.6</td>
<td>19</td>
<td>59.4</td>
</tr>
<tr>
<td>>25000</td>
<td>19</td>
<td>18.3</td>
<td>85</td>
<td>81.7</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>44</td>
<td>36.4</td>
<td>77</td>
<td>63.6</td>
</tr>
<tr>
<td>Salaried</td>
<td>20</td>
<td>36.4</td>
<td>35</td>
<td>63.6</td>
</tr>
<tr>
<td>Retired</td>
<td>6</td>
<td>54.5</td>
<td>5</td>
<td>45.5</td>
</tr>
<tr>
<td>Farmer</td>
<td>20</td>
<td>47.6</td>
<td>22</td>
<td>52.4</td>
</tr>
<tr>
<td>Professional</td>
<td>7</td>
<td>33.3</td>
<td>14</td>
<td>66.7</td>
</tr>
<tr>
<td>Others</td>
<td>14</td>
<td>53.8</td>
<td>12</td>
<td>46.2</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>93</td>
<td>48.4</td>
<td>99</td>
<td>51.6</td>
</tr>
<tr>
<td>PG</td>
<td>18</td>
<td>21.4</td>
<td>66</td>
<td>78.6</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>23</td>
<td>38.3</td>
<td>37</td>
<td>61.7</td>
</tr>
<tr>
<td>Commerce</td>
<td>20</td>
<td>36.4</td>
<td>35</td>
<td>63.6</td>
</tr>
<tr>
<td>Arts</td>
<td>37</td>
<td>61.7</td>
<td>23</td>
<td>38.3</td>
</tr>
<tr>
<td>Technical</td>
<td>31</td>
<td>30.7</td>
<td>70</td>
<td>69.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>111</td>
<td>40.2</td>
<td>165</td>
<td>59.8</td>
</tr>
</tbody>
</table>
Chapter 4: Data Analysis & Research Findings

H_{021} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of brand placements as an unethical marketing method.

H_{A21} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of brand placements as an unethical marketing method.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_{1} “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion of brand placements as an unethical marketing method.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion of brand placements as an unethical marketing method.

The relation between the age was significant $\chi^2(3, N=276)=16.259$, $p=0.001$

The relation between the gender was significant $\chi^2(2, N=276)=7.972$, $p=0.005$

The relation between the family monthly income was significant $\chi^2(4, N=276)=44.880$, $p=0.000$

The relation between the respondents studying UG or PG was significant $\chi^2(3, N=276)=17.730$, $p=0.000$

The relation between the respondents faculty was significant $\chi^2(3, N=276)=15.720$, $p=0.001$

The p value is $p\leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variables (age, gender, family monthly income, studying & faculty).
By looking at the % frequency distribution the relation with age the respondents opinion of brand placements as an unethical marketing method was 50% within the age group ≤20 yrs., but in the age bracket of >24 yrs 68% believed this technique to not being as unethical the same was reflected in the studying group very well as >24 yrs & 23-24 yrs(84.4%) would be studying PG and 78% of this also did not believe brand placement to be unethical whereas again the same reflected in the UG group i.e. 51.6% only believed it not being unethical which again would mean the same age bracket of ≤24 yrs. Respondents belonging to higher family monthly income i.e. >25000 were 82% who believed brand placement as not being unethical whereas 70% respondents whose family income was ≤10,000 considered brand placement technique as unethical. Although the p value was not significant yet this association was again justified in relation with fathers occupation - the higher income bracket would mostly belong to business class & professional (Dr., CA, Lawyer etc.) families and they were 63.6% & 66.7% respectively who believed brand placement as not being unethical but on the other hand respondents whose fathers were retired were highest by 54.5% in considering brand placement as unethical technique and their family monthly income would be mostly in the lower income bracket. Another significant association was with the students studying in various faculty, it was observed that students from technical faculty did not consider brand placement as unethical by 69.3 % whereas students from Arts background considered brand placement technique to be unethical by 61.7%

Table 4.2.22: Cross tabulation : Percentage frequency distribution of respondents considering Brand Placements as an unethical marketing method with respondents Awareness that brand placement is a marketing tool using chi-square test for independence.

<table>
<thead>
<tr>
<th>Awareness that brand placement being a marketing tool</th>
<th>Considering Brand Placements as an unethical marketing method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES %</td>
</tr>
<tr>
<td>YES</td>
<td>102</td>
</tr>
<tr>
<td>NO</td>
<td>9</td>
</tr>
<tr>
<td>Column total</td>
<td>111</td>
</tr>
</tbody>
</table>

Chi-Square Value- 0.081 df-1 p-value-0.776
Chapter 4: Data Analysis & Research Findings

H$_{022}$ There is no association (relation) between respondents considering Brand Placements as an unethical marketing method and respondents Awareness that brand placement is a marketing tool.

H$_{A22}$ There is an association (relation) between respondents considering Brand Placements as an unethical marketing method and respondents Awareness that brand placement is a marketing tool.

Interpretation: The null hypothesis should not be rejected. Chi-square test of independence was performed to examine the relation and it was non significant $\chi^2(1,N=276)=0.081, p=0.776$

The p value is p>0.05 for the chi-square χ^2 tests of independence performed to examine the association.

Table 4.2.23: t-test for independent samples

<table>
<thead>
<tr>
<th></th>
<th>Brand Placements are un-ethical</th>
<th>N</th>
<th>Mean</th>
<th>Std. D</th>
<th>t-value</th>
<th>d.f</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1519 Realism, credibility & film congruity enhancement</td>
<td>YES</td>
<td>111</td>
<td>5.5946</td>
<td>2.196</td>
<td>2.048</td>
<td>274</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>165</td>
<td>6.1455</td>
<td>2.187</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H$_{023}$ The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents considering brand placements as being or not being unethical are equal using independent t-test.

H$_{A23}$ The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents considering brand placements as being or not being unethical are not equal using independent t-test.

Interpretation: The null hypothesis (H$_0$) should be rejected in favor of alternative hypothesis(H$_1$). The average of the realism, credibility & film congruity enhancement amongst the 2 group of respondents considering brand placements as being or not being unethical are not equal using independent t-test.

Result indicate that respondents believing realism, credibility & film congruity enhancement is higher amongst the respondents believing brand placements to not be
unethical ($M=165, SD=2.187$) than respondents of the opinion that brand placements are unethical ($M=111, SD=2.196$), $t(274)=2.048, p=0.0491$.

4.2.6 Analysis of RQ 7

RQ7: Does brand placement in any way influence the trial, usage or purchase behavior of the viewers for the brand.

Table 4.2.24: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents behavior to discuss the brands after watching them in a movie in theatre using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents behavior to discuss brands after watching them in movie in theatre</th>
<th>Always</th>
<th>Very Often</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Never</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background variables</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>16</td>
<td>19</td>
<td>9</td>
<td>10.7</td>
<td>38</td>
<td>45.2</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>14</td>
<td>11.5</td>
<td>3</td>
<td>2.5</td>
<td>55</td>
<td>45.1</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>4</td>
<td>8.9</td>
<td>2</td>
<td>4.4</td>
<td>19</td>
<td>42.2</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>2</td>
<td>8.0</td>
<td>3</td>
<td>12.0</td>
<td>10</td>
<td>40.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 19.526</td>
<td>df 12</td>
<td>p-value 0.077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>10.1</td>
<td>8</td>
<td>5.8</td>
<td>60</td>
<td>43.5</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
<td>15.9</td>
<td>9</td>
<td>6.5</td>
<td>62</td>
<td>44.9</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 6.294</td>
<td>df 4</td>
<td>p-value 0.178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income <= 10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,001-15000</td>
<td>7</td>
<td>15.6</td>
<td>2</td>
<td>4.4</td>
<td>20</td>
<td>44.4</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>6</td>
<td>17.1</td>
<td>1</td>
<td>2.9</td>
<td>15</td>
<td>42.9</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>3</td>
<td>9.4</td>
<td>4</td>
<td>12.5</td>
<td>12</td>
<td>37.5</td>
</tr>
<tr>
<td>>25000</td>
<td>10</td>
<td>9.6</td>
<td>5</td>
<td>4.8</td>
<td>45</td>
<td>43.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 19.535</td>
<td>df 16</td>
<td>p-value 0.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>19</td>
<td>15.7</td>
<td>10</td>
<td>8.3</td>
<td>56</td>
<td>46.3</td>
</tr>
<tr>
<td>Salaried</td>
<td>5</td>
<td>9.1</td>
<td>3</td>
<td>5.5</td>
<td>20</td>
<td>36.4</td>
</tr>
<tr>
<td>Retired</td>
<td>1</td>
<td>9.1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>36.4</td>
</tr>
<tr>
<td>Farmer</td>
<td>6</td>
<td>14.3</td>
<td>1</td>
<td>2.4</td>
<td>19</td>
<td>45.2</td>
</tr>
<tr>
<td>Professional</td>
<td>1</td>
<td>4.8</td>
<td>1</td>
<td>4.8</td>
<td>9</td>
<td>42.9</td>
</tr>
<tr>
<td>Others</td>
<td>4</td>
<td>15.4</td>
<td>2</td>
<td>7.7</td>
<td>14</td>
<td>53.8</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 23.110</td>
<td>df 20</td>
<td>p-value 0.283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>30</td>
<td>15.6</td>
<td>13</td>
<td>6.8</td>
<td>87</td>
<td>45.3</td>
</tr>
<tr>
<td>PG</td>
<td>6</td>
<td>7.1</td>
<td>4</td>
<td>4.8</td>
<td>35</td>
<td>41.7</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 7.083</td>
<td>df 4</td>
<td>p-value 0.132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>8</td>
<td>13.3</td>
<td>6</td>
<td>10.0</td>
<td>29</td>
<td>48.3</td>
</tr>
<tr>
<td>Commerce</td>
<td>7</td>
<td>12.7</td>
<td>2</td>
<td>3.6</td>
<td>21</td>
<td>38.2</td>
</tr>
<tr>
<td>Arts</td>
<td>8</td>
<td>13.3</td>
<td>2</td>
<td>3.3</td>
<td>26</td>
<td>43.3</td>
</tr>
<tr>
<td>Technical</td>
<td>13</td>
<td>12.9</td>
<td>7</td>
<td>6.9</td>
<td>46</td>
<td>45.5</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value 9.471</td>
<td>df 12</td>
<td>p-value 0.662</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>36</td>
<td>13.0</td>
<td>17</td>
<td>6.2</td>
<td>122</td>
<td>44.2</td>
</tr>
</tbody>
</table>
H_{024} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents' behavior to discuss the brands after watching them in a movie in theatre.

H_{A24} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents' behavior to discuss the brands after watching them in a movie in theatre.

Interpretation: The null hypothesis should not be rejected. Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s behavior to discuss the brands after watching them in a movie in theatre and there was no association found to be significant.

By looking at the % frequency distribution in totality it was observed that 44.2% discussed the brands sometimes only and the next highest was 19.9% who rarely discussed the brands after watching them in a movie.
Table 4.2.25: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placements have influence over their purchases using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Always</th>
<th>Very Often</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Never</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <20 yrs.</td>
<td>5</td>
<td>6.0</td>
<td>10</td>
<td>11.9</td>
<td>37</td>
<td>44.0</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>5</td>
<td>4.1</td>
<td>12</td>
<td>9.8</td>
<td>49</td>
<td>40.2</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>1</td>
<td>2.2</td>
<td>3</td>
<td>6.7</td>
<td>24</td>
<td>53.3</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>2</td>
<td>8.0</td>
<td>1</td>
<td>4.0</td>
<td>12</td>
<td>48.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>21.004</td>
<td>df = 12</td>
<td>p-value</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gender						
Male	4	2.9	12	8.7	59	42.8
Female	9	6.5	14	10.1	63	45.7
Chi-Square						
Value	7.612	df = 2	p-value	0.107		

Family Monthly income <=10,000	7	11.7	5	8.3	30	50.0
10,001-15000	4	8.9	6	13.3	15	33.3
15001-20,000	1	2.9	2	5.7	16	45.7
20,001-25000	0	0	0	12.5	11	34.4
>25000	1	1.0	9	8.7	50	48.1
Chi-Square						
Value	29.458	df = 16	p-value	0.021		

Fathers occupation Business	6	5.0	12	9.9	48	39.7
Salaried	0	0	6	10.9	30	54.5
Retired	1	9.1	1	9.1	4	36.4
Farmer	3	7.1	3	7.1	19	45.2
Professional	1	4.8	1	4.8	7	33.3
Others	2	7.7	3	11.5	14	53.8
Chi-Square						
Value	26.745	df = 20	p-value	0.143		

Studying UG	10	5.2	19	9.9	84	43.8
PG	3	3.6	7	8.3	38	45.2
Chi-Square						
Value	17.361	df = 4	p-value	0.002		

Faculty	5	8.3	7	11.7	28	46.7
Science	0	0	4	7.3	27	49.1
Commerce	6	10.0	4	6.7	26	43.3
Arts	2	2.0	11	10.9	41	40.6
Technical						
Chi-Square						
Value	21.976	df = 12	p-value	0.038		

| Column total | 13 | 4.7 | 26 | 9.4 | 122 | 44.2 |
Chapter 4: Data Analysis & Research Findings

H_{0.25} \hspace{1em} \text{There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placements have influence over their purchases.}

H_{A.25} \hspace{1em} \text{There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placements have influence over their purchases.}

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_1 “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placements have influence over their purchases. Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion that brand placements have influence over their purchases.

The relation between the age was significant $\chi^2(12,N=276)=21.004$, $p=0.050$

The relation between the family monthly income was significant $\chi^2(16,N=276)=29.458$, $p=0.021$

The relation between the studying (UG/PG) of respondent was significant $\chi^2(4,N=276)=17.361$, $p=0.002$

The relation between the faculty of respondent was significant $\chi^2(12,N=276)=21.976$, $p=0.038$
Chapter 4 : Data Analysis & Research Findings

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (age, family monthly income, studying, faculty).

Table 4.2.26: Cross tabulation :- Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placement in movies help to develop interest in brands using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Always</th>
<th>Sometimes</th>
<th>Never</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>19</td>
<td>22.6</td>
<td>41</td>
<td>48.8</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>22</td>
<td>18.0</td>
<td>70</td>
<td>57.4</td>
</tr>
<tr>
<td>>24 yrs.</td>
<td>7</td>
<td>15.6</td>
<td>32</td>
<td>71.1</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value</td>
<td>df</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.244</td>
<td>6</td>
<td>0.299</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>25</td>
<td>18.1</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>28</td>
<td>20.3</td>
<td>86</td>
</tr>
<tr>
<td>Family Monthly income</td>
<td>≤10,000</td>
<td>12</td>
<td>20.0</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>10,001-15000</td>
<td>6</td>
<td>13.3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>15001-20,000</td>
<td>6</td>
<td>17.1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>20,001-25000</td>
<td>6</td>
<td>18.8</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>>25000</td>
<td>23</td>
<td>22.1</td>
<td>59</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value</td>
<td>df</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.523</td>
<td>8</td>
<td>0.700</td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td>Business</td>
<td>20</td>
<td>16.5</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Salaried</td>
<td>16</td>
<td>29.1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Retired</td>
<td>2</td>
<td>18.2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Farmer</td>
<td>8</td>
<td>19.0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>2</td>
<td>9.5</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>5</td>
<td>19.2</td>
<td>13</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value</td>
<td>df</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.440</td>
<td>10</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td>UG</td>
<td>38</td>
<td>19.8</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>PG</td>
<td>15</td>
<td>17.9</td>
<td>58</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value</td>
<td>df</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.161</td>
<td>2</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td>Science</td>
<td>11</td>
<td>18.3</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Commerce</td>
<td>10</td>
<td>18.2</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Arts</td>
<td>14</td>
<td>23.3</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Technical</td>
<td>18</td>
<td>17.8</td>
<td>59</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value</td>
<td>df</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.582</td>
<td>6</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>53</td>
<td>19.2</td>
<td>159</td>
<td>57.6</td>
</tr>
</tbody>
</table>
Chapter 4 : Data Analysis & Research Findings

H_{026} There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies help to develop interest in brands.

H_{A26} There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies help to develop interest in brands.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_{1} “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies help to develop interest in brands.”

Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) respondents opinion that brand placement in movies help to develop interest in brands.

The relation between the studying (UG/PG) was significant $\chi^2(2, N=276)=8.161$, $p=0.017$.

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (studying).
Table 4.2.27: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents opinion that brand placement in movies lead to activate desire for trial of brands using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Always</th>
<th>Never</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age yrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=20</td>
<td>9</td>
<td>27</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>7</td>
<td>33</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>3</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>4</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 5.420 df-6 p-value-0.491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9</td>
<td>41</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>36</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 1.412 df-2 p-value-0.494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=10,000</td>
<td>4</td>
<td>23</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>6</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>5</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>1</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>7</td>
<td>27</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 9.345 df-8 p-value-0.314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>11</td>
<td>36</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>5</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>0</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>6</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>0</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 10.611 df-10 p-value-0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>16</td>
<td>58</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>7</td>
<td>19</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 1.734 df-2 p-value-0.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>4</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>3</td>
<td>14</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>7</td>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>9</td>
<td>29</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value- 3.236 df-6 p-value-0.779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>23</td>
<td>77</td>
<td>276</td>
</tr>
</tbody>
</table>

113
There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies lead to activate desire for trial of brands.

There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies lead to activate desire for trial of brands.

Interpretation: Based on the statistical test, the null hypothesis could not be rejected i.e. “There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that brand placement in movies lead to activate desire for trial of brands.”

Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) respondents opinion that brand placement in movies lead to activate desire for trial of brands.

The p value was not p≤0.05 for the chi-square χ^2 tests of independence performed to examine the association between the background variable.
Table 4.2.28: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents using a brand after seeing it in a movie using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Count</th>
<th>%</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>5</td>
<td>6.0</td>
<td>46</td>
<td>54.8</td>
<td>33</td>
<td>39.3</td>
<td>84</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>8</td>
<td>6.6</td>
<td>53</td>
<td>43.4</td>
<td>61</td>
<td>50.0</td>
<td>122</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>1</td>
<td>2.2</td>
<td>19</td>
<td>42.2</td>
<td>25</td>
<td>55.6</td>
<td>45</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>1</td>
<td>4.0</td>
<td>8</td>
<td>32.0</td>
<td>16</td>
<td>64.0</td>
<td>25</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 5.420</td>
<td>df-6</td>
<td>p-value-0.491</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>5.1</td>
<td>64</td>
<td>46.4</td>
<td>67</td>
<td>48.6</td>
<td>138</td>
</tr>
<tr>
<td>Female</td>
<td>8</td>
<td>5.8</td>
<td>62</td>
<td>44.9</td>
<td>68</td>
<td>49.3</td>
<td>138</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 0.106</td>
<td>df-2</td>
<td>p-value-0.948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10,000</td>
<td>7</td>
<td>11.7</td>
<td>22</td>
<td>36.7</td>
<td>31</td>
<td>51.7</td>
<td>60</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>3</td>
<td>6.7</td>
<td>20</td>
<td>44.4</td>
<td>22</td>
<td>48.9</td>
<td>45</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>3</td>
<td>8.6</td>
<td>11</td>
<td>31.4</td>
<td>21</td>
<td>60.0</td>
<td>35</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>46.9</td>
<td>17</td>
<td>53.1</td>
<td>32</td>
</tr>
<tr>
<td>>25000</td>
<td>2</td>
<td>1.9</td>
<td>58</td>
<td>55.8</td>
<td>44</td>
<td>42.3</td>
<td>104</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 16.131</td>
<td>df-8</td>
<td>p-value-0.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>7</td>
<td>5.8</td>
<td>59</td>
<td>48.8</td>
<td>55</td>
<td>45.5</td>
<td>121</td>
</tr>
<tr>
<td>Salaried</td>
<td>2</td>
<td>3.6</td>
<td>33</td>
<td>60.0</td>
<td>20</td>
<td>36.4</td>
<td>55</td>
</tr>
<tr>
<td>Retired</td>
<td>1</td>
<td>9.1</td>
<td>2</td>
<td>18.2</td>
<td>8</td>
<td>72.7</td>
<td>11</td>
</tr>
<tr>
<td>Farmer</td>
<td>2</td>
<td>4.8</td>
<td>13</td>
<td>31.0</td>
<td>27</td>
<td>64.3</td>
<td>42</td>
</tr>
<tr>
<td>Professional</td>
<td>1</td>
<td>4.8</td>
<td>10</td>
<td>47.6</td>
<td>10</td>
<td>47.6</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>7.7</td>
<td>9</td>
<td>34.6</td>
<td>15</td>
<td>57.7</td>
<td>26</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 13.964</td>
<td>df-10</td>
<td>p-value-0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>13</td>
<td>6.8</td>
<td>94</td>
<td>49.0</td>
<td>85</td>
<td>44.3</td>
<td>192</td>
</tr>
<tr>
<td>PG</td>
<td>2</td>
<td>2.4</td>
<td>32</td>
<td>38.1</td>
<td>50</td>
<td>59.5</td>
<td>84</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 6.362</td>
<td>df-2</td>
<td>p-value-0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>5</td>
<td>8.3</td>
<td>25</td>
<td>41.7</td>
<td>30</td>
<td>50.0</td>
<td>60</td>
</tr>
<tr>
<td>Commerce</td>
<td>1</td>
<td>1.8</td>
<td>20</td>
<td>36.4</td>
<td>34</td>
<td>61.8</td>
<td>55</td>
</tr>
<tr>
<td>Arts</td>
<td>5</td>
<td>8.3</td>
<td>25</td>
<td>41.7</td>
<td>30</td>
<td>50.0</td>
<td>60</td>
</tr>
<tr>
<td>Technical</td>
<td>4</td>
<td>4.0</td>
<td>56</td>
<td>55.4</td>
<td>41</td>
<td>40.6</td>
<td>101</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value- 10.492</td>
<td>df-6</td>
<td>p-value-0.105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>15</td>
<td>5.4</td>
<td>126</td>
<td>45.7</td>
<td>135</td>
<td>48.9</td>
<td>276</td>
</tr>
</tbody>
</table>
Chapter 4 : Data Analysis & Research Findings

H$_{028}$ There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents using a brand after seeing it in a movie.

H$_{A28}$ There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents using a brand after seeing it in a movie.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H$_1$ “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents using a brand after seeing it in a movie.”

Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondents using a brand after seeing it in a movie.

The relation between the family monthly income was significant $\chi^2(8,N=276)=16.131$, $p=0.041$

The relation between the studying (UG/PG) was significant $\chi^2(2,N=276)=6.362$, $p=0.042$

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (family monthly income, studying).
Table 4.2.29: Cross tabulation: Percentage frequency distribution of respondents opinion that television advertisements have influence over their purchases with respondents opinion that brand placements influence their purchases using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents opinion that brand placements influence their purchases</th>
<th>Respondents opinion that television advertisements have influence over their purchases</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Always</td>
<td>Very Often</td>
</tr>
<tr>
<td>Count</td>
<td>%</td>
<td>Count</td>
</tr>
<tr>
<td>Always 5</td>
<td>38.5</td>
<td>1</td>
</tr>
<tr>
<td>Very often 2</td>
<td>7.7</td>
<td>8</td>
</tr>
<tr>
<td>Sometimes 4</td>
<td>3.3</td>
<td>26</td>
</tr>
<tr>
<td>Rarely 0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Never 2</td>
<td>3.3</td>
<td>3</td>
</tr>
<tr>
<td>Column Total</td>
<td>13</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Chi-Square Value= 108.508 df=16 p-value=0.000

H_{029} There is no association(relation) between respondents opinion that television advertisements influence their purchases and respondents opinion that brand placements influence their purchases.

H_{A29} There is an association(relation) between respondents opinion that television advertisements influence their purchases and respondents opinion that brand placements influence their purchases.

Interpretation :- The null hypothesis should be rejected in favour of the alternative hypothesis H_{1} “There is an association(relation) between respondents opinion that television advertisements influence their purchases and respondents opinion that brand placements influence their purchases.”

Chi-square test of independence was performed to examine the relation and it was significant
\(\chi^2(16, N=276)=108.508, \ p=0.000 \)

The p value is \(p \leq 0.05 \) for the chi-square \(\chi^2 \) tests of independence performed to examine the association.
Table 4.2.30: Cross tabulation: Percentage frequency distribution of Respondents opinion that brand placement in movies help to lead to activate desire for trial of brands with respondents opinion that brand placement in movies bring awareness about brands using chi-square test for independence.

<table>
<thead>
<tr>
<th>Respondents opinion that brand placement in movies bring awareness about brands</th>
<th>Respondents opinion that brand placement in movies help to lead to activate desire for trial of brands</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Always</td>
<td>Sometimes</td>
<td>Never</td>
<td>Row Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td>Count</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>10</td>
<td>20.8</td>
<td>32</td>
<td>66.7</td>
<td>6</td>
<td>12.5</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Sometimes</td>
<td>12</td>
<td>6.8</td>
<td>119</td>
<td>67.2</td>
<td>46</td>
<td>26.0</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1</td>
<td>2.0</td>
<td>25</td>
<td>49.0</td>
<td>25</td>
<td>49.0</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>23</td>
<td>8.3</td>
<td>176</td>
<td>63.8</td>
<td>77</td>
<td>27.9</td>
<td>276</td>
<td></td>
</tr>
</tbody>
</table>

Chi-square Value - 26.600, df=4, p-value=0.000

H\textsubscript{030} There is no association (relation) between respondents opinion that brand placement in movies help to lead to activate desire for trial of brands and respondents opinion that brand placement in movies bring awareness about brands.

H\textsubscript{A30} There is an association (relation) between respondents opinion that brand placement in movies help to lead to activate desire for trial of brands and respondents opinion that brand placement in movies bring awareness about brands.

Interpretation :- The null hypothesis should be rejected in favour of the alternative hypothesis H\textsubscript{1} “There is an association (relation) between respondents opinion that brand placement in movies help to lead to activate desire for trial of brands and respondents opinion that brand placement in movies bring awareness about brands”

Chi-square test of independence was performed to examine the relation and it was significant
\[\chi^2(4, N=276)=26.600, \ p=0.000 \]

The p value is p\leq0.05 for the chi-square \(\chi^2 \) tests of independence performed to examine the association.
Table 4.2.31: Cross tabulation: Percentage frequency distribution of respondents using a brand after seeing it in a movie with respondents opinion that brand placement in movies bring awareness about brands using chi-square test for independence.

Respondents opinion that brand placement in movies bring awareness about brands	Respondents using a brand after seeing it in a movie						
	Always	Sometimes	Never	Row Total			
Count	%	Count	%	Count	%		
Always	5	10.4	21	43.8	22	45.8	48
Sometimes	10	5.6	79	44.6	88	49.7	177
Never	0	0	26	51.0	25	49.0	51
Column Total	15	5.4	126	45.7	135	48.9	276

Chi-square Value: 5.491 df-4 p-value=0.241

H₀: there is no association (relation) between respondents using a brand after seeing it in a movie and respondents opinion that brand placement in movies bring awareness about brands.

Hₐ: there is an association (relation) between respondents using a brand after seeing it in a movie and respondents opinion that brand placement in movies bring awareness about brands.

Interpretation: Chi-square test of independence was performed to examine the relation and it was non significant $\chi^2(4,N=276)=5.491$, p=0.241. Therefore, we failed to reject the null hypothesis H₀.

The p value is p>0.05 for the chi-square χ^2 tests of independence performed to examine the association.
Table 4.2.32: Cross tabulation: Percentage frequency distribution of respondents opinion that the feelings towards the brand is affected by the way it is used in movie with respondents behavior to discuss brands after watching them in movie in theatre using chi-square test for independence.

Respondents behavior to discuss brands after watching them in movie in theatre	Respondents opinion that the feelings towards the brand is affected by the way it is used in movie	Total Row									
	Always	Very Often	Sometimes	Rarely	Never						
Count	%	Count	%	Count	%	Count	%				
Always	4	66.7	0	0.0	2	33.3	0	0.0	0	0.0	6
Very often	7	15.6	5	11.1	25	55.6	3	6.7	5	11.1	45
Sometimes	16	12.8	11	8.8	60	48.0	22	17.6	16	12.8	125
Rarely	6	10.2	1	1.7	21	35.6	21	35.6	10	16.9	59
Never	3	7.3	0	0.0	14	34.1	9	22.0	15	36.6	41
Column Total	36	13.0	17	6.2	122	44.2	55	19.9	46	16.7	276

Chi-Square Value- 52.247 df-16 p-value-0.000

H\textsubscript{032} There is no association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre.

H\textsubscript{A32} There is an association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H\textsubscript{1} “There is an association(relation) between respondents opinion that the feelings towards the brand is affected by the way it is used in movie and respondents behavior to discuss brands after watching them in movie in theatre”

Chi-square test of independence was performed to examine the relation and it was significant

\[\chi^2(16, N=276)=52.247, \ p=0.000 \]

The p value is p\leq0.05 for the chi-square \(\chi^2 \) tests of independence performed to examine the association.
Chapter 4 : Data Analysis & Research Findings

Table 4.2.33: One way Anova Test for Awareness of Respondents with Interest, Desire and Action

<table>
<thead>
<tr>
<th>Q 24.1</th>
<th>AQ24</th>
<th>F-value (2,273)</th>
<th>P-Value</th>
<th>Post-Hoc Comparisons to see exactly which pairs of groups are significantly different. (Scheffes method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always (1)</td>
<td>N=48</td>
<td>F(2,273)= 7.865</td>
<td>P-Value= 0.000</td>
<td>Always & Never p-value= 0.000</td>
</tr>
<tr>
<td>(2)</td>
<td>N=48</td>
<td>F=2.833</td>
<td>P-Value=0.033</td>
<td>Sometimes & never p-value=0.033</td>
</tr>
<tr>
<td>(3)</td>
<td>N=48</td>
<td>F=2.3446</td>
<td>P-Value=0.13055</td>
<td></td>
</tr>
<tr>
<td>Never (3)</td>
<td>N=48</td>
<td>F=1.32527</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[H_{033} \] The average of the following parameters(i.e. Interest, Desire & Action towards a brand due to brand placement in movies, combined to arrive at a score)amongst the respondents awareness opinion are equal using one-way anova test

\[H_{A33} \] The average of the following parameters(i.e. Interest, Desire & Action towards a brand due to brand placement in movies, combined to arrive at a score)amongst the respondents awareness opinion are not equal using one-way anova test

Interpretation: A one way ANOVA between subjects was conducted to compare the effect of brand placement on the following parameters(i.e. Interest, desire and action towards a brand due to brand placement in movie). There was a significant effect \(F(3,273)=7.865,p=0.000 \) at p-value<0.05 level for the 3 respondents opinion groups(always, sometimes & never).

This means that there was a significant effect of respondents being aware on the following parameters(i.e. Interest, desire and action towards a brand due to brand placement in movie). Three post host comparisons using the Scheffes method was conducted. The comparison of respondents always getting aware(M=2.833,SD=0.974)and respondents never getting aware(M=1.80,SD=1.32) was significant at p=0.038 and the comparison of Technical(M=174.06,SD=89.400) and Arts(M=128.50,SD=83.602) was significant at p=0.000. The comparison of respondents sometimes getting aware (M=2.344,SD=1.305) and never getting aware(M=1.80,SD=1.32) was significant at p=0.033.
4.2.7 Analysis of RQ 8

RQ8 :- Is there any relation between popularity of star(actor) and brand recall?

Table 4.2.34: Cross tabulation: Percentage frequency distribution of all Background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respect to respondents opinion that the likeability of star(actor) effects the recall level of the brand used in the movie using chi-square test for independence.

<table>
<thead>
<tr>
<th>Background variables</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Total Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20 yrs.</td>
<td>10</td>
<td>11.9</td>
<td>27</td>
<td>32.1</td>
<td>19</td>
<td>22.6</td>
</tr>
<tr>
<td>20-22 yrs.</td>
<td>23</td>
<td>18.9</td>
<td>29</td>
<td>23.8</td>
<td>30</td>
<td>24.6</td>
</tr>
<tr>
<td>23-24 yrs.</td>
<td>9</td>
<td>20.0</td>
<td>20</td>
<td>44.4</td>
<td>13</td>
<td>28.9</td>
</tr>
<tr>
<td>>24 yrs</td>
<td>1</td>
<td>4.0</td>
<td>8</td>
<td>32.0</td>
<td>7</td>
<td>28.0</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 20.269</td>
<td>df: 12</td>
<td>p-value: 0.062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>25</td>
<td>18.1</td>
<td>47</td>
<td>34.1</td>
<td>27</td>
<td>19.6</td>
</tr>
<tr>
<td>Female</td>
<td>18</td>
<td>13.0</td>
<td>37</td>
<td>26.8</td>
<td>42</td>
<td>30.4</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 5.682</td>
<td>df: 4</td>
<td>p-value: 0.224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Monthly income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10,000</td>
<td>5</td>
<td>8.3</td>
<td>12</td>
<td>20.0</td>
<td>15</td>
<td>25.0</td>
</tr>
<tr>
<td>10,001-15000</td>
<td>5</td>
<td>11.1</td>
<td>6</td>
<td>13.3</td>
<td>20</td>
<td>44.4</td>
</tr>
<tr>
<td>15001-20,000</td>
<td>6</td>
<td>17.1</td>
<td>10</td>
<td>28.6</td>
<td>10</td>
<td>28.6</td>
</tr>
<tr>
<td>20,001-25000</td>
<td>6</td>
<td>18.8</td>
<td>11</td>
<td>34.4</td>
<td>7</td>
<td>21.9</td>
</tr>
<tr>
<td>>25000</td>
<td>21</td>
<td>20.2</td>
<td>45</td>
<td>43.3</td>
<td>17</td>
<td>16.3</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 46.141</td>
<td>df: 16</td>
<td>p-value: 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fathers occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>27</td>
<td>22.3</td>
<td>37</td>
<td>30.6</td>
<td>25</td>
<td>20.7</td>
</tr>
<tr>
<td>Salaried</td>
<td>9</td>
<td>16.4</td>
<td>22</td>
<td>40.0</td>
<td>15</td>
<td>27.3</td>
</tr>
<tr>
<td>Retired</td>
<td>3</td>
<td>27.3</td>
<td>4</td>
<td>36.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Farmer</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>16.7</td>
<td>12</td>
<td>28.6</td>
</tr>
<tr>
<td>Professional</td>
<td>3</td>
<td>14.3</td>
<td>7</td>
<td>33.3</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>3.8</td>
<td>7</td>
<td>26.9</td>
<td>10</td>
<td>38.5</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 51.956</td>
<td>df: 20</td>
<td>p-value: 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>29</td>
<td>15.1</td>
<td>51</td>
<td>26.6</td>
<td>47</td>
<td>24.5</td>
</tr>
<tr>
<td>PG</td>
<td>14</td>
<td>16.7</td>
<td>33</td>
<td>39.3</td>
<td>22</td>
<td>26.2</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 9.635</td>
<td>df: 4</td>
<td>p-value: 0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>13</td>
<td>21.7</td>
<td>14</td>
<td>23.3</td>
<td>16</td>
<td>26.7</td>
</tr>
<tr>
<td>Commerce</td>
<td>8</td>
<td>14.5</td>
<td>19</td>
<td>34.5</td>
<td>13</td>
<td>23.6</td>
</tr>
<tr>
<td>Arts</td>
<td>3</td>
<td>5.0</td>
<td>13</td>
<td>21.7</td>
<td>16</td>
<td>26.7</td>
</tr>
<tr>
<td>Technical</td>
<td>19</td>
<td>18.8</td>
<td>38</td>
<td>37.6</td>
<td>24</td>
<td>23.8</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>Value: 36.397</td>
<td>df: 12</td>
<td>p-value: 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column total</td>
<td>43</td>
<td>15.6</td>
<td>84</td>
<td>30.4</td>
<td>69</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Chapter 4 : Data Analysis & Research Findings

$H_{0,34}$ There is no association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that the likeability of star (actor) effects the recall level of the brand used in the movie.

$H_{A,34}$ There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that the likeability of star (actor) effects the recall level of the brand used in the movie.

Interpretation: The null hypothesis should be rejected in favour of the alternative hypothesis H_1 “There is an association (relation) between the background variables (age, gender, family monthly income, fathers occupation, studying, faculty) and respondents opinion that the likeability of star (actor) effects the recall level of the brand used in the movie.” Chi-square test of independence was performed to examine the relation between the background variables of respondents (age, gender, family monthly income, fathers occupation, studying, faculty) with respondent’s opinion that the likeability of star (actor) effects the recall level of the brand used in the movie.

The relation between the family monthly income was significant

\[\chi^2(16, N=276)=46.141, p=0.000 \]

The relation between the fathers occupation was significant \[\chi^2(20, N=276)=51.956, p=0.000 \]

The relation between the faculty of respondent was significant \[\chi^2(12, N=276)=36.397, p=0.000 \]

The p value is $p \leq 0.05$ for the chi-square χ^2 tests of independence performed to examine the association between the background variable (family monthly income, fathers occupation, faculty).

By looking at the % frequency distribution the relation with family income of the respondents (on combining the score of ‘strongly agree’ and ‘agree’ as ‘agree’ and ‘strongly disagree’ and ‘disagree’ as disagree) respondents from the highest income bracket of >25000 were highest with 63.5% opinion that the likeability of star (actor)
effects the recall level of the brand used in the movie. Respondents who belonged to fathers occupation of retired category were highest with 63.7% thereon 56.4 % who belonged to Technical background were the highest(56.4%) to the opinion that the likeability of star(actor) effects the recall level of the brand used in the movie.

4.2.8 Analysis of RQ 9

RQ9:- Is there any relationship between frequency of watching movies or broadcast program and viewer level of brand recall and recognition?

Content Analysis

The Question no 20 in the questionnaire tries to ascertain recall levels of respondents towards the brand placements done in the 10 Hindi motion pictures. A stimulus was provided to the respondents in form of a clue of multiple options from which they needed to tick the correct option(i.e. the brand featured in the particular movie). A listing of 10 films was selected for the study, released from 2003 till 2010. The identification of these films was based on their box office earnings, genre and number of placements. Also the films in the aided recall test framed in form of Question no. 20 in the questionnaire was selected by surveying 76 males and females aged 18-26 years(who were not part of the sample of 276), obtained via a snowball technique(Burns & Bush 2000). They complied a list of their favorite movies genres and movie stars. A selection of films that fulfilled these identified criteria underwent preliminary examination for the presence of product placement.

Film Congruity : A mere mention of the brand or a brief appearance of the product on the screen is taken as a lower plot connection and henceforth low film congruity. Where as when a brand is contributing majorly to the story, taking the major place in the story line or building the persona of the character then we can say that film congruity is high.

Modality of Placement : Brands were classified according to modes i.e. visual or verbal mode. Visual placement includes the actual brand, still advertisement of the brand, brand packaging, brand display. Verbal placement is linked to direct reference by audio mode only and no visuals. Brands could be featured with both a visual and verbal component.
Regardless of modality, placements can be either prominent or subtle. Prominent placements are those in which brands are used, or are clearly visible and/or formally expressed or integrated in the story. Subtle placements are those in which brands are only visible in the background and in which brands do not play a role in the story (Gupta & Lord, 1998). Prominence is thus defined as ‘the extent to which the product placement possesses characteristics designed to make it the central focus of audience attention’ (Gupta & Lord, 1998, p. 48).

Table 4.2.35: Content Analysis of the stimulus in the question no 20

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>Movie name</th>
<th>Movie seen or not</th>
<th>Please tick on the correct brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Koi Mil Gaya</td>
<td>qYes qNo</td>
<td>Bournivita, Verbal placement – mentioned by the main protagonist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: high</td>
</tr>
<tr>
<td>2</td>
<td>Chak de</td>
<td>qYes qNo</td>
<td>McDonald, Visual placement - occurs when a product, service or logo can simply be observed within</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the setting of the film</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: low</td>
</tr>
<tr>
<td>3</td>
<td>Fashion</td>
<td>qYes qNo</td>
<td>Sunsilk, Visual placement: - shown within the movie as an advertisement done by the main</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>protagonist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: low</td>
</tr>
<tr>
<td>4</td>
<td>Baagban</td>
<td>qYes qNo</td>
<td>ICICI, Visual placement : -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main Protagonist: - endorses the brand</td>
</tr>
<tr>
<td>5</td>
<td>Om Shanti Om</td>
<td>qYes qNo</td>
<td>TagHeur, Visual Placement –</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main Protagonist: - endorses the brand</td>
</tr>
<tr>
<td>6</td>
<td>Rocket Singh</td>
<td>qYes qNo</td>
<td>TVS Scooty Pep, Audio Visual Placement – used by the protagonist of the film throughout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: high</td>
</tr>
<tr>
<td>7</td>
<td>Rab ne bana di Jodi</td>
<td>qYes qNo</td>
<td>Hyndai i10, Audio Visual Placement -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main Protagonist: - endorses the brand</td>
</tr>
<tr>
<td>8</td>
<td>Wake up Sid</td>
<td>qYes qNo</td>
<td>Honda, Visual Placement – present during a song</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: low</td>
</tr>
<tr>
<td>9</td>
<td>My Name is Khan</td>
<td>qYes qNo</td>
<td>Reebok, Audio Visual Placement – prominetly used in the film by the main</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>protagonist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: high</td>
</tr>
<tr>
<td>10</td>
<td>Badmaash Company</td>
<td>qYes qNo</td>
<td>Reebok, Audio Visual Placement –</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Film Congruity: high</td>
</tr>
</tbody>
</table>
Selection of films were based on as mentioned earlier earnings, genre, placements, boxoffice verdict. The films were handpicked from the year 2003 till 2011 based on the above mentioned criteria. The table will provide the following criteria in a systematic form.

Table 4.2.36: Criteria for Identification of movies

<table>
<thead>
<tr>
<th>Name of Movie</th>
<th>Release Year</th>
<th>Collection in INR – for 3 weeks (excluding overseas collection)</th>
<th>Boxoffice Verdict</th>
<th>Genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koi Mil gaya</td>
<td>2003</td>
<td>130.09 cr</td>
<td>Superhit</td>
<td>Fantasy, drama</td>
</tr>
<tr>
<td>Baagban</td>
<td>2003</td>
<td>19.20 cr (26 screens)</td>
<td>Hit</td>
<td>Family drama</td>
</tr>
<tr>
<td>Chak de</td>
<td>2007</td>
<td>105.48 cr</td>
<td>Superhit</td>
<td>Adventure, sports drama</td>
</tr>
<tr>
<td>Om Shanti Om</td>
<td>2007</td>
<td>133.21 cr</td>
<td>Superhit</td>
<td>Drama</td>
</tr>
<tr>
<td>Rab ne bana de Jodi</td>
<td>2008</td>
<td>128.70 cr</td>
<td>Superhit</td>
<td>Romantic</td>
</tr>
<tr>
<td>Fashion</td>
<td>2008</td>
<td>26.88 cr</td>
<td>average</td>
<td>Drama</td>
</tr>
<tr>
<td>Rocket Singh</td>
<td>2009</td>
<td>10.50 cr</td>
<td>Below average</td>
<td>Drama, Comedy</td>
</tr>
<tr>
<td>Wake up sid</td>
<td>2009</td>
<td>42.75 cr</td>
<td>Above average</td>
<td>Comedy, drama</td>
</tr>
<tr>
<td>My Name is Khan</td>
<td>2010</td>
<td>135.34 cr</td>
<td>Superhit</td>
<td>Drama</td>
</tr>
<tr>
<td>Badmaash Company</td>
<td>2010</td>
<td>55.30 cr</td>
<td>Hit</td>
<td>Drama, comedy</td>
</tr>
</tbody>
</table>

Source: www.boxofficeindia.com (accessed on 23.03.2011)

Correctness Score

Aided Recall Question no:- 20

Q20A :- Movies see out of 10(movie exposure)

Q20B:- Correct answer

Table 4.2.37: One way Anova Test and Scheffes Post-Hoc Test for Frequency of Movies

<table>
<thead>
<tr>
<th>NQ 20 A Movies seen (out of the 10 movies given)</th>
<th>Q20B Right Answers given for the aided recall question for Brand recall test</th>
<th>F-value (2,273)</th>
<th>P-Value</th>
<th>Post-Hoc Comparisons to see exactly which pairs of groups are significantly different. (Scheffes method)</th>
</tr>
</thead>
<tbody>
<tr>
<td><=5 movies (1)</td>
<td>N</td>
<td>51</td>
<td>F- Value= F(2,272)= 34.584</td>
<td>P-Value= 0.000 SIGNIFICANT</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.4118</td>
<td>1.61464</td>
<td><=5 movies & 8-9 movies p-value=0.000</td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>6.2500</td>
<td>1.56286</td>
<td><=5 movies & All movies p-value=0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td>1.55640</td>
<td>6-7 movies & 8-9 movies p-value=0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0781</td>
<td>1.55640</td>
<td>6-7 movies & All movies p-value=0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73</td>
<td>1.58066</td>
<td>8-9 movies & All movies p-value=0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1233</td>
<td>1.58066</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>276</td>
<td>1.84189</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.7826</td>
<td>1.84189</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.84189</td>
<td>1.84189</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>N</td>
<td>276</td>
<td>6.7826</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>8.1233</td>
<td>1.58066</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std D</td>
<td>276</td>
<td>1.84189</td>
<td></td>
</tr>
</tbody>
</table>
H_{035} The average of the movie exposure (movies seen out of the 10 movies given as a aided recall) amongst the respondents answering correctly are equal using one-way anova test.

H_{A35} The average of the movie exposure (movies seen out of the 10 movies given as a aided recall) amongst the respondents answering correctly are not equal using one-way anova test.

Interpretation: A one way ANOVA between subjects was conducted to compare the movie exposure (movies seen out of the 10 movies given as a aided recall) and the correctness score. There was a significant effect F(2,272)=34.584, p=0.000 at p-value<0.05 level for the 4 respondents movie exposure groups(<=5 movies, 6-7 movies, 8-9 movies, all movies). This means that there was a significant effect of respondents' movie exposure. Four post host comparisons using the Scheffes method was conducted. The comparison of respondents watched <=5 movies (M=5.4118, SD=1.614) and respondents watched 6-7 movies (M=6.25, SD=1.56) was significant at p=0.029 and the comparison of respondents watched <=5 movies (M=5.4118, SD=1.614) and 8-9 movies (M=7.078, SD=1.556) was significant at p=0.000. The comparison of respondents watched <=5 movies (M=5.4118, SD=1.614) and respondents watched all movies (M=8.123, SD=1.580) was significant at p=0.000. The comparison of respondents watched 6-7 movies (M=6.25, SD=1.56) and respondents watched 8-9 movies (M=7.078, SD=1.556) was significant at p=0.018. The comparison of respondents watched 6-7 movies (M=6.25, SD=1.56) and respondents watched all movies (M=8.123, SD=1.580) was significant at p=0.002. The comparison of respondents watched 8-9 movies (M=7.078, SD=1.556) and respondents watched all movies (M=8.123, SD=1.580) was significant at p=0.002.
From the graph it is clear that except for “Rocket Singh” and “Om Shanti Om” in all the rest movies the score of right answers is always higher than wrong answers for those respondents who have seen the movie. Henceforth exposure of movie does effect the correctness in the aided recall test.

4.3 RESEARCH FINDINGS

This part provides the answers to the research questions that were stated in the chapter one. Drawing conclusions from our findings of the data analysis done and thereby reaching our stated research purpose, which is to provide a better understanding of how brand placement is used in Hindi movies, will do this.

4.3.1 Findings for RQ1:- How can the different types of product placement be described ?

Conclusions that can be drawn regarding RQ1 are :-

Relation to the Program
There must be strong relationship with the story and the plot of the movie to create a symbolic value . There must be a strong relationship with the movie plot in order to be convincing .

Mode of presentation:-

• Visual – The Brand is visually apparent
• Audio- The Brand is mentioned verbally
• Audio/Visual- The Brand is both mentioned verbally and audio vise.
A visual placement is more preferable than an audio placement in terms of being convincing.

Level of Prominence

- Prominent – Highly visible in both size and screen position and if the product is repeatedly or if it continue an essential part of the dialogue. It is also considered prominent if the placement is central to the action in the scene.
- Subtle – The product may be more difficult to distinguish and to identify.

The level of prominence affects the level of recognition.

4.3.2 Findings for RQ2: Is the effectiveness of the television advertisements declining?

On an average the respondents are watching television for 3 hours per day. Hence 13% i.e. $\frac{1}{8}$th part of their day is spent on watching dedicated television each day which gives opportunity to marketers to get them exposed to the traditional television advertisement.

Overall 32.2% of respondents find the advertising between the programs disturbing in front of just 9.1% who never find these advertisements as disturbing elements. Again respondents from business class background are highest with 38.8% who always find such advertisement as disturbance whereas the rural background respondents belonging from farming are the highest who never feel the advertisements shown on television as disturbance within the programs. Also the respondents who belong to the technical stream are always getting disturbed by highest at 42.6% whereas Arts stream respondents are highest who are never feeling the advertisements as disturbance at 16.7%. Another area where the result is not significant, yet we can observe slight variations such as the male respondents are getting more disturbed at 34.1% as compared to female respondents at 30.4%. We also observe that the age bracket of 20-22 years is highest to feel television advertisements to be disturbing at 36.9% although the variation is not very high in all the other age categories.

The zipping and zapping i.e. switching over of channels while Television commercials appear is found to be high as 39.9% always tend to switch over the channels. Although the male respondents were higher by 34.1% to find these television commercials disturbing yet the habit or behavior of switching over of channels is found to be higher in female respondents as the television commercials
appear. Again the age of 20-22 is highest to get disturbed by television commercials and also highest to switch channels at 42.6%. Henceforth it is clearly observed in table -3 where the result is significant at p=0.000 that although those who are never finding the advertisements on television as disturbance are low at 9.1% yet out of them also the 32.0% always tend to switch channels while television commercial appear.

Conclusion: So it clearly indicates that the effectiveness of the traditional television advertisements is immensely declining due to the switching (zipping and zapping) behavior of channel and also that such commercials are now found to be disturbing and as interruptions within the television programs. There is also an audience fragmentation taking place due to the rise in the number of cable channels, commercial clutter driven by increasing time allocated to advertisements and a simultaneous decrease in commercial length. Due to the proliferation of advertisements and the consequent difficulty in getting commercial messages to reach and influence potential customers, product placement appears to be an interesting alternative to traditional marketing communication tools. Finally, product placements are one means for overcoming the all-to common problem of advertising avoidance via zipping, zapping and muting. The Research has found growth in consumer’s negative attitude towards conventional television advertisement coupled with the proliferation of technology that allow them to ‘zap’ through the television commercials. This growth in consumers’ negative attitudes towards conventional advertising is coupled with the proliferation of technology such as digital video recorders that allow them to ‘zap’ through the television commercials.

4.3.3 Findings for RQ3: How does product placement affect the viewer? To check the acceptability and effectiveness of brand placements in Hindi movies.

The respondents go to watch on an average 3 times movie in a theatre per month. If typically a movie is 2.5 hours then in a month 8 hours they are being exposed to the theatrical experience where they cannot control the medium by zipping, zapping or muting and are a captive audience without any distractions. Perhaps most important to the marketer is the captive nature of the audience. In terms of communication
potential, the theatrical situation is ideal. Viewers are seated in a dark theater facing
the screen with few other distracting stimuli. Brands are featured to fullest effect in
naturalistic contexts readily understood by viewers. Thus the research finds that the
respondent’s ability to notice brand placements in the films is highest by 90.2%. Both
male and female respondents tend to notice brands almost equally at 89.9% and
90.6% respectively. The movies watched per month in theatre by Under Graduate is
higher with mean 2.49 as against Post Graduate with a mean 1.93. The movies
watching trend per month is different in different age groups and the significantly
different groups are <20 years and 20-22 years and <20 years and 23-24 years.

Again, it is evident that almost all who notice brand are also aware that brand
placement is a marketing tool or a non-traditional method of advertising the brand at
91.3%. Here the awareness levels of female respondents is high at 95.7% as
compared to male respondents at 87.0%.

Conclusion: Film attendees select a particular film. They book a seat at a particular
cinema at a specific time. Efforts to view the film are in most cases planned and
motivated. This audience is captured for a given time, where their sight senses
perceive almost all the information, due to the darkened cinema. All other senses
align with the visual incoming messages. Constant exposure to well-placed products
will eventually impact on the cinema attendees.

4.3.4 Findings for RQ4 :- Do viewers perceive that product placement increases
the realism of the film or broadcast program?

It is evident that respondents who feel that the brand placement enhances realism to
the movies and also credibility to the story and yet do not find it as wrong and
unethical is higher at 6.14 average (from score 0 to 10) as compared to 5.59 average at
the p-value being significant. It is also indicated that the brand placement as
enhancing realism differs across the various age group and the age group of 23-24
years consider it highest with a mean of 6.37. Realism enhancement tends to differ
across the fathers occupation as the salaried ones feel the realism factor maximum
with a mean of 7.0. Also the study stream of respondents tend to differ as the
Technical background students find brand placement as realism enhancing by mean of 6.48.

So the respondents feel that the brand placement enhances the realism in the movies and the story line as well as they then seem closer to real life situations.

On Combining the percentage frequency of “strongly agree” and “agree” as well as “disagree” and “strongly disagree”. We can conclude from Table 8 that 34.7% respondents do not find the brands shown in the movie or the brand placements done in the movie a disturbing element or cause of irritation while watching a movie as again 27.5% who agree to brand placements being a disturbance. But a large number of respondents i.e. 37.7% tend to be neutral in their opinion. Also as mentioned earlier from Table 6 that the respondents from Technical stream tend to be highest in showing tolerance towards brand placements by 69.3% the same is reflected where they are highest at 46.5% who disagree and strongly disagree for the brand placement as to be disturbing the flow of the movie and becoming a cause of irritation.

Conclusion: The use of a brand name product in a film enhances the realism, due to the fact that it lends a natural “everyday” touch to its settings. Brand placements strengthen a film’s link to real life. Brand placements therefore add realism and authenticity to scenes in films. Placing a brand name product within a film gives products an intensified sense of realism.

4.3.5 **Findings for RQ5: Do viewers / consumers recognize the brand names that were integrated with the script (film or broadcast program) ? Do they find them more credible ?**

It is clearly indicated by combining the percentage frequency of “strongly agree” and “agree” as against the combined figure of “disagree” and “strongly disagree” that 45.3% of respondents agree that using real brands in movies makes the entire experience more realistic and true to life as against 20.7% of respondents who disagree to this. Also it is again made clear when respondents at 53.3% agree in
favor of using real brands over fake brands in movies as against a low of 22.1% who disagree in favor of use of real brands.

Conclusion: Hence forth this makes it very clear that the respondents find brand placements as a phenomenon which enhances realism factor in movies and brings it closer to the real life like situation. The brand name and product are featured within a real-life environment, which enhances the credibility of the product. Products placed in feature films have a higher credibility than paid advertisements due to their perceived realism. Placing a brand name product within a film gives products an intensified sense of realism.

When brand placements are highly involved with the role that actors play in a movie or even become a tool to highlight some characteristics of the role, the brands become a part of role. Brand placements will provide the audience information that are related to a role; display the specialty of a role and their life style to help the audiences identify the role that the actors played in the plot; clearly strengthen the perception of the role and also the relationship between audiences and the role to make the movie more enjoyable.

4.3.6 Findings for RQ6 Do viewers perceive product placement to be ethical means of promotion?

As it is evident that the respondents are not only noticing brands in films but are also aware of this being a marketing method. Table tells us that still 59.8% of respondents don’t mind this and do not find it as an unethical marketing method. Respondents in the age bracket of 23-24 years probably doing Post graduate are highest to not consider brand placement as unethical marketing method at 84.4% and 78.6% respectively. Again respondents belonging to the technical stream are more tolerant towards brand placements being highest 69.3%. Also the high monthly family income respondents i.e. >25000 are not finding brand placements as unethical being highest at 81.7%.
It is depicted that even though those respondents who were not aware of brand placements as being a marketing method do not consider it to be wrong or unethical method with being high at 62.5% as against 37.5% who consider it as a wrong or unethical marketing method.

On again combining the percentage frequency of “disagree” and “strongly disagree” we observe that male respondents are not finding brand placements disturbing and cause of irritation at 42.1% as compared to female respondents at 27.5% . This could also be as male respondents are less aware about brand placement being a marketing method at 87.0% in comparison to the 95.7% of female being aware . Again earlier it was observed that male respondents were higher who did not consider brand placement as unethical at 68.1% in comparison to 51.4% of female respondents not considering it unethical . Therefore overall the acceptance level of Male respondents is higher for brand placement.

Conclusion: Hence it is evident that brand placement is not being really viewed as unethical marketing method. Infect respondents of higher age and technical background and the male gender are seemingly very tolerant towards the phenomenon of brand placements in the movies.

The research finds that Brand Placement relies on the gender of the viewer also. Female respondents seemed to view product placement as a unnatural intrusion into the viewing experience, which they believed should be free of manipulative marketing practices. Whereas Male respondents were more inclined to view brands as interactive touchstones within a film, that helped increase reality of the scene, thus increasing the immediacy and enjoyment of the viewing experience.

4.3.7 Findings for RQ7: Does brand placement in any way influence the trial, usage or purchase behavior of the viewers for the brand.

It has been evident that the brand placement is not very successful in influencing the purchases of respondents at a low of 14.1% i.e. combined percentage of “always” and “very often” as the researcher observes that the television advertisements have a higher percentage of influence over the respondents purchases at 21.4%. This was
Chapter 4: Data Analysis & Research Findings

Further reflected in Table - where 83% respondents responded as brand placement leading to “always” active desire for trial of brands. Also in Table -18, 48.9% of respondents never started using a brand after seeing it in a movie. Though 57.6% of respondents feel that sometimes the brand placement helps to develop interest in brands. Again the result is significant out of 38.5% of respondents who feel that influence over their purchases only 4.7% of respondents agree the same with brand placement in movies which is the lowest.

Conclusion: Henceforth it can be concluded that though the variation is not much but alone the brand placement is not sufficient and it needs the support of other traditional marketing method for influencing the audiences.

4.3.8 Findings for RQ8: Is there any relation between popularity of star(actor) and brand recall?

The researcher observes that 46% of respondents are of the opinion that if the star or the actor in the film is liked by them then it effects the recall levels of the brand i.e. they tend to remember the brand more when the actor or the main protagonist in the film is of their choice and liked by them as against a low of 28.9% who disagree with this. Respondents who are having the highest family monthly income i.e. >25000 are the highest who get to agree at 63.5%. As higher income brings along higher aspirations and therefore they aspire to be like their favorite or most liked star or actor.

Conclusion: Actors are employed by film producers and not by the sponsors of the product being placed in the film. Therefore, they apparently have nothing to gain financially by using the product in the film or broadcast television programme context. This allows the actor to be viewed as a credible and trustworthy source. When an favorite actor shows satisfaction from the consumption of a specific product (brand) in a film, the audience encounter “model” behaviors that may lead to desirable consequences, as seen from the marketer’s perspective. Moreover, individuals may be able to use some easily available consumer goods as a link to those desired attributes possessed by the actor.
4.3.9 Findings for RQ9: Is there any relationship between frequency of watching movies or broadcast program and viewer level of brand recall and recognition?

It is clearly indicated that the male respondents are more exposed to films used for the aided recall test with a mean 7.77 as compared to mean 7.3 of female respondents. Also reflecting the same the correctness score of aided recall test in male respondents with mean 7.31 is higher as compared to mean 6.24 in female respondent. Also the movie exposure in the aided recall test differs across the different age groups with highest exposure being in the age group of 23-24 years with mean 7.73. The exposure i.e. the maximum movies watched in the aided recall test also differs across the family monthly income and the maximum movies watched are by the highest income group of >25000 with a mean of 7.9. The study stream of respondents also affects the number of movies watched in the aided recall test and students from science stream are the highest with mean of 7.9 and arts stream are lowest with mean of 6.7. It is found that in the aided recall test the correctness score differs across the number of movies seen group of <=5 movies has the lowest mean of correctness score i.e. 5.411 whereas the maximum movies seen group of all movies has the highest mean of correctness score i.e. 8.123.

Conclusion: Since the brand is integrated within film, its image becomes vital in order to produce positive consumer evaluation and ethical reactions toward the product placement. The more positive the image of the brand is the more positive is the consumer’s reaction to the placement. A subtle placement is seen upon with a more attitude by the consumer from an ethical point of view compared to a prominent placement regardless if it is integrated or not. Because of the lower level of interference, subtle brand placement creates a more positive reaction among consumers than integrated prominent brand placement, which on the other hand creates a more positive reaction among consumers than non-integrated prominent product placement.