CONTENTS

DECLARATION
SUPERVISOR CERTIFICATE
PREFACE

CHAPTER/SECTIONS

<table>
<thead>
<tr>
<th>CHAPTER -I</th>
<th>INTRODUCTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The acid volcanism</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Pre-, syn- and post-tectonic diapirs</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Pluton shapes and strains</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Concentric arrangement structures and composition</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Granite types</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Untala Granite</td>
<td>6</td>
</tr>
<tr>
<td>1.8</td>
<td>Strain determination from shear zones and deformed xenoliths</td>
<td>8</td>
</tr>
<tr>
<td>1.9</td>
<td>Computer simulation</td>
<td>9</td>
</tr>
<tr>
<td>1.10</td>
<td>The brittle deformation</td>
<td>9</td>
</tr>
<tr>
<td>1.11</td>
<td>The Newania carbonatite</td>
<td>10</td>
</tr>
<tr>
<td>1.12</td>
<td>Deformation and metamorphism</td>
<td>11</td>
</tr>
<tr>
<td>1.13</td>
<td>General conclusions</td>
<td>11</td>
</tr>
</tbody>
</table>

CHAPTER -II GEOLOGICAL AND STRUCTURAL SETUP

2.1	Introduction	13
2.2	The outer margin	15
2.3	The outcrops and contacts	16
2.4	Structural setup	19
2.4.1	The deformation episodes and related fold structures	19
2.4.2	Boudinage	23
2.5	The Newania Carbonatite	23
CHAPTER-III DETERMINATION OF FINITE STRAINS FROM DEFORMED XENOLITHS 25-32

3.1 Introduction 25
3.2 The xenoliths and method 26
3.3 The example of naturally deformed xenoliths 27
3.4 The finite strains 29
3.5 General conclusions 32

CHAPTER-IV KINEMATIC INDICATORS AND THE ROLE OF SHEAR IN INFLUENCING PLUTON SHAPE AND STRAINS 33-51

4.1 Introduction 33
4.2 Kinematic indicators in Untala pluton 35
4.3 Computation of shear strain 49
4.4 The component of subhorizontal shear 49
4.5 The foliation trajectories and major folds 50

CHAPTER-V THE BRITTLE FIELD 52-62

5.1 Introduction 52
5.2 The dominantly sinistral strike slip faults 53
5.3 The dominantly dextral strike slip faults 57
5.4 The conjugate faults 59
5.5 Brittle ductile shear zones 59
5.6 The analysis of stress 61
Appendix - Program ROMSA 63-81

CHAPTER-VI TIME MOVEMENT RELATIONS 82-92

6.1 Introduction 82
6.2 General petrography 83
6.3 General principles 84
6.4 The porphyroblastic minerals 84
6.5 The animation movie 85
6.6 Si-Se relationship in parphyroblasts 86
6.7 The brittle deformation of plagioclase 88
6.8 The late thermal high 89
6.9 Time movement relations on mineral growths
6.10 Plots of deformation verses metamorphism

CHAPTER-VII COMPUTER SIMULATIONS STUDIES

7.1 Introduction
7.2 The computer program
7.3 CoralDRAW computer simulation
7.4 General conclusions
Appendix - Program BALOON

CHAPTER-VIII EMIPLACEMENT KINEMATICS

8.1 Introduction
8.2 Shape of pluton
8.3 Viscosity of the magma
8.4 Mathematical modelling and computer simulation in relation to finite strains
8.5 Role of shear on pluton shape and strains
8.6 Compositional variation across the plutons
8.7 Conclusions

CHAPTER-VIII SUMMARY AND SYNTHESIS

REFERENCES