TABLE OF CONTENTS

Table of Contents v
List of Acronyms and Abbreviations ix
List of Symbols, xi
List of Tables xii
List of Figures xv
List of Author’s Publications xx
Abstract xxi

CHAPTER 1 INTRODUCTION

1.1 General 1
1.2 Construction and demolition waste scenario 2
1.3 Utilization of recycled aggregate in concrete 3
1.4 Necessity for the present work 4
1.5 Research objectives 6
1.6 Research methodologies 7
1.7 Layout of the thesis 8

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10
2.2 Utilization of C&D waste in concrete 11
2.3 Recycled aggregate concrete (RAC) 15
2.4 Processing techniques of RA used in RAC 24
2.5 Mixing approaches used in RAC 28
2.6 Conclusions from literature review 36
2.7 Summary 36
CHAPTER 3 PROCESSING TECHNIQUE AND MIXING APPROACHES

3.1 Processing technique used in the present study 38
3.2 Production process of processed recycled aggregate(PRA) 40
3.3 Mixing approaches adopted in the present study 44
3.4 Normal mixing approach (NMA) 45
3.5 Two-Stage mixing approaches (TSMAs) 46
3.6 Summary 52

CHAPTER 4 EXPERIMENTAL PLANNING AND TESTING

4.1 Materials used 54
 4.1.1 Cement and silica fume 54
 4.1.2 Aggregates (F.A, VCA, PRA) 54
 4.1.3 Superplasticizer and water 57
4.2 Mix proportion adopted in this work (M75-grade) 57
4.3 Casting and curing details of concrete specimens 58
4.4 Tests and Testing methods of concrete 58
 4.4.1 Workability 59
 4.4.2 Mechanical properties 59
 i) density, ii) strengths (compressive strength, flexural strength and split tensile strength), iii) modulus of elasticity, iv) ultra sonic pulse velocity
 4.4.3 Durability properties 59
 i) water absorption, ii) sorptivity, iii) rapid chloride permeability test (RCPT), iv) drying shrinkage and v) abrasion resistance
 4.4.4 Scanning electronic microscopy (SEM) 59
4.5 Summary 59
CHAPTER 5 INFLUENCE OF PROCESSING TECHNIQUE ON RAC

5.1 Introduction 60
5.2 Workability 60
5.3 Mechanical properties 62
 i) density, ii) strengths (compressive, flexural, split tensile), iii) modulus
 of elasticity and iv) ultra sonic pulse velocity
5.4 Durability properties 82
 i) water absorption, ii) sorptivity, iii) rapid chloride permeability
 test (RCPT), iv) drying shrinkage and v) abrasion resistance
5.5 Scanning electron microscopy (SEM) 91
5.6 Selection of most suitable processed recycled aggregate(PRA) 95
5.7 Conclusions 96

CHAPTER 6 INFLUENCE OF MIXING APPROACHES ON RAC

6.1 Introduction 97
6.2 Workability 98
6.3 Mechanical properties 99
 i) density, ii) strengths (compressive, flexural, split tensile), iii) modulus
 of elasticity and iv) ultra sonic pulse velocity
6.4 Durability properties 120
 i) water absorption, ii) sorptivity, iii) rapid chloride permeability
 test (RCPT), iv) drying shrinkage and v) abrasion resistance
6.5 Scanning electron microscopy (SEM) 128
6.6 Selection of most appropriate variant of two-stage mixing approach 137
6.7 Conclusions 140
CHAPTER 7 CONCLUSIONS, RECOMMENDATIONS AND SCOPE OF FUTURE WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Conclusions</td>
<td>141</td>
</tr>
<tr>
<td>7.2</td>
<td>Recommendations</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>Scope of future work</td>
<td>143</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

| BIBLIOGRAPHY | 144 |

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Concrete mix design (M75 grade)</td>
<td>168</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Experimental results (Chapter-5)</td>
<td>172</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Experimental results (Chapter-6)</td>
<td>180</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Stages of work (photos)</td>
<td>199</td>
</tr>
</tbody>
</table>